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Abstract

Social interaction effects are often estimated under the strong assumption that an individual’s

choices are a direct function of the observed characteristics of their reference group. This paper

considers a less restrictive potential outcomes framework in which interaction with a given peer

or peer group is considered a treatment with an unknown and variable treatment effect. In this

framework, conventional peer effect regressions can be interpreted as characterizing treatment

effect heterogeneity. This framework is then used to clarify identification and interpretation of

commonly-used peer effect models and to suggest avenues for improving conventional empirical

practice.
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1 Introduction

Empirical researchers often aim to measure the impact of peers or some other reference group

on a person’s choices or outcomes. Much of this research is based on a behavioral model,

generally associated with1 Manski (1993), in which an individual’s outcome responds directly

to the observed outcomes (endogenous effects) and characteristics (contextual effects) of peers.

Manski’s formulation has inspired an extensive literature developing methods for modeling

endogenous effects and for empirically distinguishing them from both contextual effects and

endogenous peer selection.

The modeling of contextual effects has seen less formal attention despite their prevalence in

empirical research. Economic theory provides little guidance on which peer characteristics to

include in the model, so some researchers include whatever potentially relevant peer variables

are available while others include only a single variable of interest. The results of these varying

ad hoc specifications are often difficult to interpret or compare across studies (Fruehwirth, 2014)

*Contact email: bkrauth@sfu.ca. Revised versions available at bvkrauth.github.io/publication/peertreat
1In Manski (1993), behavior responds to the conditional expectation of peer behavior and characteristics, but

in most subsequent empirical work it is taken to respond to their observed values. Blume et al. (2011, p. 891-892)
discuss this distinction and some of its implications.
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in the absence of a unifying framework or model selection criterion. Many of these difficulties

are a byproduct of interpreting contextual effects as direct and constant : in the absence of an

endogenous effect, any two peer groups with the same observed characteristics are assumed to

have the exact same effect on outcomes. This interpretation imposes strong data requirements

and identifying assumptions in order to estimate the model and make relevant counterfactual

predictions. More specifically, the estimated model must include all potentially relevant peer

characteristics, and the counterfactuals must be defined in terms of their impact on all of those

characteristics. These requirements are unlikely to be met in most applications, and may lead to

substantial omitted variables bias.

This paper describes an alternative “peers as treatments” formulation in which each person

has an unobserved and person-specific influence on peer outcomes. This influence is analogous

to a standard treatment effect, but each person represents a distinct treatment whose effect on

peers may vary across treated individuals and with the other group members. An person’s effect

on peers may be correlated with observed background characteristics, but need not be an exact

function of these characteristics as in the traditional model. In this setting, estimated contextual

effects are best understood as describing treatment effect heterogeneity along researcher-selected

dimensions. The framework can then be used to define causal peer effects in terms of explicit

counterfactuals, to state conditions under which they are identified, and to provide simple

estimators.

The implications of this model support and clarify many common empirical practices. The

peer effects defined in this paper can usually be estimated by linear regressions similar to those

regularly used in empirical research. Simple linear models provide useful information, and

researchers can use different model specifications to explore different dimensions of peer effect

heterogeneity without needing to take a stand on the “true” model. Peer effects can be identified

using simple random assignment of peers, random assignment based on observable characteristics,

or (with some caveats) random cohorts or subgroups within endogenously-selected larger groups.

At the same time, the model implies clear recommendations and constraints for future

empirical work. First, parsimonious specifications with a few binary or categorical explanatory

variables are more robustly informative than the ad hoc specifications with many variables that

often appear in empirical research. Second, the precise source of identifying randomness in

peer group formation has subtle but important implications for the set of counterfactuals that

can be credibly assessed. For example, the random cohort research design commonly used to

measure classroom peer effects only identifies the impact of counterfactual student allocations

within the school, and say little about cross-school reallocations unless the researcher is willing

to impose strong assumptions. Finally, while the results here show almost any form of peer

effect heterogeneity can be identified and interpreted, credible statistical inference on peer

effect heterogeneity is hampered by the risk of spurious inferences resulting from unreported

specification search and multiple testing. Techniques from the literature on treatment effect

heterogeneity such as pre-analysis plans or more careful data-driven inference (Wager and Athey,

2018) can in principle be adapted to this setting, though the detailed implementation is left to

future research.
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1.1 Related literature

The contemporary economics literature on measuring social effects has been primarily aimed at

addressing the challenges described by Manski (1993): distinguishing true social effects from

spurious social effects due to nonrandom peer selection or unobserved common shocks, and

distinguishing endogenous social effects from contextual social effects. Subsequent empirical

research has addressed the first of these issues by exploiting natural experiments in which

peer group assignment is affected by purely random factors, while methodological research has

addressed the second issue by exploiting nonlinearity (Brock and Durlauf, 2000), exclusion

restrictions (Gaviria and Raphael, 2001), or social network structure (Graham, 2008; Bramoullé

et al., 2009). When endogenous and contextual effects cannot be separately identified, a common

solution is to estimate a model with only contextual effects and either assume no endogenous

effects or interpret the regression model as the reduced form of a more general structural model

with endogenous effects.

The related empirical literature is vast, and much of it emphasizes contextual effects. For

example, the classroom peer effects literature includes hundreds of papers on how student

outcomes (typically but not always test scores) are affected by observed peer ability, peer effort,

peer gender, peer race and ethncity, peer personality, peer mental health, disruptive peers, peers

with special needs, peers speaking English as a second language, etc. Other papers (Arcidiacono

et al., 2012; Isphording and Zölitz, 2020) measure the effect of a more general concept of

unobserved peer “quality” as inferred from individual fixed effects. A detailed survey of findings

on classroom peer effects is beyond the scope of the current paper, but several general conclusions

can be drawn: peer characteristics often matter, and they can matter in ways that are not fully

described by a simple one-dimensional peer quality measure. For example, several papers find

that students with learning disabilities (which have a negative effect on own achievement) have

a positive effect on peer achievement, and boys are regularly found to reduce peer achievement

even in subjects where boys perform as well as girls. In addition, the various dimensions along

which peers seem to matter are clearly related: language and ethnicity are nearly inseparable, as

are gender and behavior. Changing one contextual factor through classroom assignments will

tend to change other related factors, making it difficult to reach clear policy conclusions on the

consequences of alternative peer group assignment mechanisms.

Much of this applied work follows Manski (1993) in treating the contextual effect as a

direct and constant function of peer characteristics. As in the current paper, more recent

methodological research has used a treatment effects framework to relax these assumptions and

clarify the counterfactual policies that can be assessed under a given set of model assumptions.

Manski (2013) and Li et al. (2019) relax the assumption that peer effects are constant across

treated individuals while retaining the assumption that they depend directly on the observed peer

characteristics. In Manski (2013), the relevant peer characteristics are manipulable individual-

level treatments that have variable effects on both own and peer outcomes. Peer groups are fixed,

peer effects are identified through random assignment to treatment, and the policy of interest is a

counterfactual assignment of treatments. In Li et al. (2019), the relevant peer characteristics are

non-manipulable background characteristics, and each person’s observed characteristics have a

direct effect on peer outcomes that varies across the treated individuals but not across peers with
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a given set of observed characteristics. Peer effects are identified through random assignment of

individuals to peer groups, and the policy of interest is a counterfactual peer group assignment.

Graham et al. (2010) is similar to this paper in allowing peer effects to be both variable and

indirect. That is, the effect of one person on another may depend on unobserved characteristics of

both indviduals. In their model, observed peer characteristics do not directly affect the outcome

but are imperfect proxies for unobserved peer characteristics that do. Their policy of interest is

a counterfactual peer group assignment, as in Li et al. (2019) and this paper. The analysis and

results in this paper are complementary to those in Graham et al. (2010), but differ in several

important ways:

1. Graham et al. (2010) consider a single binary individual characteristic (e.g., race), while

this paper considers a richer (categorical) characteristics space.

2. Graham et al. (2010) assume peer groups are large enough that peer group composition

can be treated as a continuous variable. As a result:

(a) Estimation is based on nonparametric kernel regressions, their derivatives and various

integrals/averages of those derivatives.

(b) As Graham et al. (2010) note, this assumption implies that “our estimands and

estimators are not appropriate for situations where groups are small (e.g., college

roommates)’.’

In contrast, this paper assumes peer groups are small (finite) so that peer group composition

is a discrete variable. This property facilitates the use of linear models, and fits many

applications - classrooms, roommates, close friends, etc. - better than the “large groups”

assumption.

3. Graham et al. (2010) model the observed characteristics as independent of unobserved het-

erogeneity, while this paper models the observed characteristics as a function of unobserved

heterogeneity. The two formulations are substantively equivalent (one can map one model

to the other by redefining variables), but the formulation here helps to separate practical

issues of specification choice from core identifying assumptions about causal mechanisms.

Additional details on these differences are provided throughout the paper. A more general

difference is this paper’s emphasis on explaining, clarifying and improving upon current empirical

practice.

Finally, this paper is among several that use estimated peer effect models to to predict the

consequences of counterfactual allocations of individuals to peer groups. Bhattacharya (2009)

develops algorithms to find optimal assignments from a given set of model estimates. Carrell et

al. (2013) report the results of a field experiment that uses peer effect estimates from one class

cohort of students to construct presumably2 optimal allocations for a later cohort. Graham et al.

(2010) note that the large changes needed to reach an optimal group assignment are typically

infeasible and emphasize tools for predicting the effect of more feasible local reallocations like a

small reduction in segregation.

2Notably, this “optimal” allocation yielded surprisingly poor results, providing a cautionary tale on the risks of
large scale social engineering from restrictive models estimated with limited data.
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2 Model

This section develops the basic model. Section 3 defines various causal social effects within the

model environment, Section 4 establishes the main results, and Sections 5 and 6 discuss various

extensions. The model’s exposition will refer to a running example application to studying the

effect of classroom gender3 composition on an academic achievement as measured by test scores.

This question has been investigated extensively in the empirical literature, for example by Hoxby

(2000), Lavy and Schlosser (2011) and Eisenkopf et al. (2015). This research typically finds a

substantial positive effect of female peers, even in settings and academic subjects where boys

and girls have similar average outcomes. It is thus a natural application of this model, which

does not assume that peers can be ordered in a single quality dimension.

2.1 Basic framework and notation

The model features a population of heterogeneous individuals arbitrarily indexed by i ∈ N ≡
{1, 2, . . . , N}. Each individual is fully characterized by an unobservable type τi ∈ T ≡
{1, 2, . . . , T} and membership in some social group gi ∈ G ≡ {1, 2, . . . , G}. The population as a

whole is fully characterized by the random N -vectors T ∈ T N and G ∈ GN , in the sense that all

random variables in the model are functions of (T,G).

An individual’s type τi represents everything about the individual that is potentially relevant

in this domain. The type space is finite to allow the use of elementary probability theory, but it

can be quite large so that each type is typically unique to a particular individual. The ordering

of the type space is arbitrary; nearby types are not necessarily more similar, and types do not

necessarily correspond to some scalar “quality” index that is monotonically related to outcomes.

Group membership is determined by some group selection mechanism which is a discrete

conditional PDF of the form:

fG|T(GA,TA) ≡ Pr(G = GA|T = TA) (1)

for any fixed vector of group assignments GA ∈ GN and types TA ∈ T N .

Each individual experiences a scalar outcome of interest yi ∈ R which depends on both the

individual’s own type and that of other group members:

Y ≡


y1
...

yN

 ≡


y1 (T,G)

...

yN (T,G)

 ≡ Y(T,G) (2)

The model does not include a direct causal effect of peer outcomes (“endogenous effects” in the

language of Manski 1993) but it can be interpreted as the reduced form of such a model.

For each individual i, the researcher observes the peer group gi, the outcome yi and a

vector of individual background characteristics xi ∈ RK . These background characteristics are

3Following previous research and many available data sources, gender is treated as binary throughout the example.
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predetermined4 and depend only on one’s own type:

X ≡


x1

...

xN

 ≡


x(τ1)
...

x(τN )

 ≡ X(T) (3)

Note that observed characteristics do not directly affect the outcome, though there will typically

be a relationship between observed characteristics and outcomes via their shared dependence

on the unobserved type. This is a key feature of this model: the explanatory variables are not

assumed to be part of some “true” causal model, but rather have been chosen by the researcher

based on data availability and researcher interest. Another researcher might choose different

explanatory variables, and both choices could lead to interesting and valid causal results.

Example 1 (Gender peer effects in school). A researcher has data on N students allocated

across G classrooms and aims to measure the effect of classmate gender on test scores. In this

setting, the outcome and peer group variables would be:

yi ≡ student i’s test score

gi ≡ classroom ID for student i

and the observed characteristics in xi would include student i’s gender along with any other

characteristics the researcher chooses fom the available data. The unobserved type τi would repre-

sent everything in xi along with student i’s ability, past academic and nonacademic experiences,

personality, family and neighborhood context, mental and physical health, special needs, and any

other potentially relevant indvidual-level factors.

2.2 Maintained assumptions

This section states some basic assumptions that will be maintained throughout the analysis.

Assumption 1 (Independent types). Each individual’s type is an independent draw from a

common type distribution:

Pr(T = TA) =

N∏
i=1

fτ (τi(TA)) (4)

where fτ : T → [0, 1] is some unknown discrete PDF.

Assumption 1 is innocuous: the indexing of individuals is arbitrary, so unconditional indepen-

dence is supported by standard exchangeability arguments. This unconditional independence does

not imply independence of types conditional on observed characteristics X or group memberships

G.

Assumption 2 (Constant group size). Each peer group in G has exactly n members, which in

turn implies that N = nG.

4That is, they are not treatments that can be manipulated by a policy maker, as in Manski (2013).
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Assumption 2 is a standard assumption that simplifies exposition. Variable group size can be

accommodated by including group size as a conditioning/explanatory variable.

Assumption 3 (Group interactions). Given individual types and peer groups, the outcome for

individual i is:

yi(T,G) = y
(
τi, {τj}gi=gj

)
(5)

where y : T n → R is an unknown function.

Assumption 3 implies anonymous/exchangeable spillovers within peer groups, no spillovers

across peer groups, no direct effects of group assignment itself itself, and no post-assignment

random factors that might affect the outcome. Direct effects of group assignment and post-

assignment random factors are common in applied work but can be incorporated into the model

in various ways for specific applications.

Assumption 4 (Discrete characteristics). The support of xi is:

Sx ≡ {e0, e1, . . . , eK} (6)

where ek ∈ {0, 1}K is a unit vector containing one in column k and zero elsewhere; and its

probability distribution5 is fully described by:

µs ≡ Pr(xi = es) (for all s ∈ 0, 1, . . . ,K)

µ ≡ E(xi) =
[
µ1 · · · µK

]
(7)

Assumption 4 abstracts from functional form considerations by taking the observable charac-

teristics xi to be a K-vector of categorical dummy variables. If the original set of individual

characteristics does not have this structure, the researcher can generate this structure by binning

continuous variables, including interactions, etc.

Assumption 5 (Information available to the researcher). The researcher directly observes the

joint distribution of (X,Y,G).

Assumption 5 abstracts from sampling considerations in order to focus on identification

issues. Sampling designs can vary substantially in applied work on social interactions, as the

presence of social interaction effects generally violates the simple random sampling assumption.

The identification results in this paper are constructive, and suggest estimators based on linear

regression coefficients whose statistical properties are well-understood in a wide variety of

sampling designs.

Example 2 (Variable selection for gender peer effects). Continuing the gender peer effects

example, suppose the researcher decides to only include a single (K = 1) binary gender variable:

xi ≡

1 if student i is male

0 if student i is female

5Note that µ0 = 1−
∑K

s=1 µs is not included in the vector µ but can be expressed as a function of it, so it will be
treated as if it were part of µ when convenient to do so.
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This choice satisfies Assumption 4.

If the researcher also wishes to include a lagged test score in the model, Assumption 4 could be

satisfied by binning the test score (e.g. into quartiles or deciles), and interacting the binned test

score with gender. With b bins for the test score, xi would be a unit vector of length K = 2b− 1.

2.3 Optional assumptions

This section defines several additional assumptions that are not maintained throughout the

paper, but rather are required for particular propositions.

The first set of optional assumptions constrain the group selection mechanism. As usual,

some source of purely random variation in treatment status is needed to identify causal effects.

In this setting, causal inference will require some form of random group selection. Simple random

assignment is the most straightforward scenario, but the weaker assumption of conditional

random assignment is often sufficient for causal identification. Section 4.2 shows the role of

random assignment in identification.

Definition 1 (Simple random assignment). The group selection mechanism fG|T satisfies simple

random assignment (RA) if:

G ⊥⊥ T (RA)

i.e., peer group assignment does not depend on one’s unobservable type or any other predetermined

characteristics.

Definition 2 (Conditional random assignment). The group selection mechanism fG|T satisfies

conditional random assignment (CRA) based on observed characteristics if:

G ⊥⊥ T|X (CRA)

i.e., peer group assignment may depend on one’s observable characteristics but does not otherwise

depend on one’s unobservable type.

Note that simple random assignment does not constrain the researcher’s choice of background

characteristics to include in xi, while conditional random assignment requires xi to include all

characteristics that affect group assignment.

The second set of optional assumptions constrain the outcome function to be separable in

various ways. Separability is typically not required for identification, but it simplifies analysis

and interpretation. Section 4.1 shows how separability assumptions facilitate relatively simple

and easily-interpreted empirical models such as the linear in means model.

Definition 3 (Peer separability). Peer effects are peer-separable (PSE) if the effect of

replacing one peer with another does not depend on one’s other peers:

y
(
τi,
{
τ ′j , τ

})
− y (τi, {τj , τ}) = y

(
τi,
{
τ ′j , τ

′})− y (τi, {τj , τ ′}) (PSE)

for any τi, τj , τ
′
j ∈ T and τ, τ ′ ∈ T n−2.
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Definition 4 (Own separability). Peer effects are own-separable (OSE) if the effect of

replacing one peer group with another does not depend on one’s own type:

y (τi, {τ ′})− y (τi, {τ}) = y (τ ′i , {τ ′})− y (τ ′i , {τ}) (OSE)

for any τi, τ
′
i ∈ T and τ, τ ′ ∈ T n−1.

Peer effects that are neither own-separable nor peer-separable will be called non-separable.

Note that separability is a constraint on how unobserved types enter into the outcome, and is

not dependent on the specific characteristics in xi.

3 Defining social effects

Given this model, we can now define causal social effects in terms of an explicit potential outcome

function and set of counterfactuals. Individual characteristics (T,X) are predetermined (as

in Graham et al. (2010)) rather than manipulable (as in Manski (2013)), so the applicable

counterfactuals in this model describe the peer group assignment G.

In a fixed population of individuals, changes to one peer group imply corresponding changes to

other peer groups. For example, a school can only increase the number of boys in one classroom

by reducing the number of boys in another classroom. As a result, counterfactual peer group

assignments can be conceptualized in either of two distinct ways:

� Peer group effects: The predicted response of a typical individual to changing a single

peer (peer effects) or their entire peer group (group effects).

� Reallocation effects: The predicted response of the population to a feasible reallocation

of peers.

In addition, these effects can be defined for the average individual in the population (average

effects), or conditioning on observed characteristics of the treated individual (conditional effects).

Combining these features yields six causal effects of potential interest that are summarized in

Table 1 and defined later in this section.

3.1 Peer effects

Individual (observed and unobserved) characteristics are predetermined, so causal peer effects

for a given individual are defined in terms of an individual-specific potential outcome function

that treats the peer group assignment as the relevant counterfactual.

Definition 5 (Potential outcomes). Individual i’s peer group is defined as:

pi ≡ p(i,G) ≡ {j ̸= i : gj = gi} (8)

and their potential outcome function is defined as:

yi(p) ≡ y
(
τi, {τj}j∈p

)
(9)
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Estimand Treated unit Treatment

Average peer effect Average person Replace one peer
(APE)
Conditional peer effect Person w/given Replace one peer
(CPE) characteristics
Average group effect Average person Replace the peer group
(AGE)
Conditional group effect Person w/given Replace the peer group
(CGE) characteristics
Average reallocation effect Everyone A feasible reallocation
(ARE)
Conditional reallocation effect Everyone w/given A feasible reallocation
(CRE) characteristics

Table 1: Social effects defined for this model.

where the counterfactual peer group p is any size n− 1 subset of N \ {i}.

That is, the observed outcome for individual i is yi(pi), and yi(p) is the counterfactual

outcome that would have been observed if individual i had instead been assigned the peer

group p. The potential outcome function is not directly observable but can be used to define

various causal peer effects, all based on the idea of replacing randomly-selected peers with one

set of observed characteristics with randomly-selected new peers who have different observed

characteristics.

The first estimand to be defined is the average effect of replacing a single peer of one observable

type with a single peer of another observable type.

Definition 6 (Average peer effect). The average peer effect (APEk) of peers of observed

type k relative to peers of observed type zero is defined as:

APEk ≡ E (yi({j} ∪ p̃)− yi({j′} ∪ p̃)|xj = ek,xj′ = e0) (10)

where p̃ is a purely random draw of n− 2 peers from N \ {i, j, j′}, and the 1×K matrix of such

effects is defined as:

APE ≡
[
APE1 APE2 · · · APEK

]
(11)

Although equation (9) looks complex, the concept is simple. Take a randomly-selected

individual with a randomly-constructed peer group, and replace a randomly-selected peer from

the base group with a randomly-selected peer from group k. The average peer effect is the

predicted change in this individual’s outcome.

Average peer effects can be interpreted as describing the heterogeneity of peers across

identifiable groups, and are thus analogous to the conditional average treatment effect estimated

in the literature on heterogeneous treatment effects (e.g. Wager and Athey (2018)). One

difference from that setting is that there is no natural “untreated” state, so average peer effects

10



are defined relative to the average peer in an arbitrarily selected base category. Regardless of

the base category chosen, APEℓ −APEk can be interpreted as the average effect of replacing an

average peer from category k with an average peer from category ℓ.

Rather than averaging across all individuals, researchers may also be interested in how peer

effects vary with the observed characteristics of the treated individual:

Definition 7 (Conditional peer effect). The conditional peer effect (CPEs,k) of peers of

observed type k on individuals of observed type s is defined as:

CPEs,k ≡ E (yi({j} ∪ p̃)− yi({j′} ∪ p̃)|xi = es,xj = ek,xj′ = e0) (12)

where p̃ is a purely random draw of n− 2 peers from N \ {i, j, j′}, and the (K + 1)×K matrix

of such effects is defined as:

CPE ≡


CPE0,1 · · · CPE0,K

...
. . .

...

CPEK,1 · · · CPEK,K

 (13)

That is, CPEs,k can be considered the effect on the typical category-s individual of replacing

a typical base-category peer with a typical category-k peer.

Note that APE and CPE are both well-defined under the model’s maintained assumptions

and do not require the data generating process satisfies optional assumptions such as separability

or random assignment. However, these assumptions may affect identification and interpretation.

3.2 Group effects

The effect of one peer may depend on the other peer group members. For example, the effect of

a disruptive student on classmates may depend on whether there are other disruptive students

in the classroom. As a result, researchers may wish to analyze peer effects at the group level

rather than the individual level. Such an analysis requires the researcher to construct variables

describing the group as a whole, starting with the simple peer group average:

Definition 8 (Peer average characteristics). Let peer average characteristics for individual

i be defined as:

x̄i = x̄i(X,G) =
1

n− 1

∑
j ̸=i:gj=gi

xj (14)

Empirical research on peer effects often uses the “linear in means” model, which models the

outcome as a linear function of own characteristics xi and peer average characteristics x̄i. Other

studies (Hoxby and Weingarth, 2005) argue that the linear in means model is too restrictive,

and emphasize specifications that include nonlinear functions of peer characteristics: measures

of within-group heterogeneity, threshold or “critical mass” effects, etc.

The maintained assumptions described in Section 2.2 greatly simplify the modeling of

nonlinearity in this setting. Observed characteristics xi are categorical by Assumption 4 and
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group size n is fixed by Assumption 2, so x̄i has a finite support and provides a complete

description of the frequency distribution of observed characteristics among i’s peers. As a result,

any nonlinear function of observed peer characteristics can be expressed as a linear function of

some categorical variable constructed by binning or otherwise dicretizing x̄i.

Definition 9 (Binned peer group variable). Let the binned peer group variable zi ∈ {0, 1}M

be defined by:

zi = z(x̄i) =

M∑
m=1

emI (x̄i ∈ Smx̄ ) (15)

where (S0
x̄,S

1
x̄, . . . ,S

M
x̄ ) is a partition of Sx̄ (the support of x̄i), and em is the unit vector

containing one in column m and zero elsewhere. Bin m is a singleton if |Smx̄ | = 1 and pooled

if |Smx̄ | > 1. A partition that consists only of singleton bins is saturated, as is the associated

binned variable.

The group variable zi is defined by the econometrician, and can include any mix of singleton

and pooled categories. For reference, it will also be useful to define a second group variable

based on a specific saturated partition.

Definition 10 (Saturated peer group variable). Let the saturated peer group variable

zsati ∈ {0, 1}Msat

be defined6 by:

zsati = zsat(x̄i) = e(n−1)
∑K

k=1 x̄iknk−1 (16)

Note that the econometrician could choose zi = zsati , but in practice there will be a

bias/variance trade off as the number of observations per category decrease in the number

of bins.

Example 3 (Variables for gender peer effects). Continuing the gender peer effects example, the

gender composition of student i’s classroom is fully described by x̄i ∈ [0, 1], the proportion of

classmates who are male. Its support is Sx̄ =
{
0, 1

n−1 , . . . , 1
}

which has |Sx̄| = n elements. The

researcher can construct various categorical variables from x̄i including:

� Majority-female or majority-male (M = 1):

zi = z(x̄i) =

0 if 0.0 ≤ x̄i ≤ 0.5

1 if 0.5 < x̄i ≤ 1.0

6Note that defining a specific variable requires choosing a specific ordering of categories, but the ordering is
arbitrary. That is, there is nothing relevant about the formula (n− 1)

∑K
k=1 x̄ikn

k−1 other than it is one of many
ways to assign a different bin number to each possible value of x̄i.
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� All-female, all-male, and mixed (M = 2):

zi = z(x̄i) =


[ 0 0 ] if x̄i = 0.0

[ 1 0 ] if 0.0 < x̄i < 1.0

[ 0 1 ] if x̄i = 1.0

� A saturated variable (M = n− 1) that nests all other options:

zi = z(x̄i) =



[ 0 0 . . . 0 ] if x̄i = 0.0

[ 1 0 . . . 0 ] if x̄i =
1

n−1

...

[ 0 0 . . . 1 ] if x̄i = 1.0

Given a researcher’s choice of zi, one can define peer group effects with or without conditioning

on the characteristics of the treated individual:

Definition 11 (Group effects). The average group effect of a bin m peer group (relative to a

bin zero peer group) is defined as:

AGEm ≡ E(yi(p̃)|zi(p̃) = em)− E(yi(p̃)|zi(p̃) = e0) (17)

and the conditional group effect of a bin m peer group on category s individuals is defined as:

CGEs,m ≡ E(yi(p̃)|xi = es, zi(p̃) = em)− E(yi(p̃)|xi = es, zi(p̃) = e0) (18)

where p̃ is a purely random draw7 of n − 1 peers from N \ {i}. The M-vector AGE and the

(K + 1)×M matrix CGE are also defined accordingly.

The average group effect can be interpreted as the effect on a randomly-selected individual of

replacing a randomly constructed bin-zero peer group with a randomly constructed bin-m peer

group, and the conditional group effect is the same quantity for a randomly-selected individual

from a particular category. As with average and conditional peer effects, average and conditional

group effects are well-defined under the maintained assumptions of the model, though their

identification and interpretation may depend on additional conditions.

Example 4 (Peer group effects for gender peer effects). Continuing the gender peer effects

example, let zi = I (x̄i > 0.5) be an indicator for whether the peer group is majority male. For

convenience, assume n is even so there are no exactly-balanced peer groups. Then the following

causal effects can be defined:

7Note that AGEm and CGEs,m are defined in terms of a purely random draw of peers, and thus imposes a
particular conditional distribution for Pr(x̄i|zi). Proposition 6 in Section 4.3 shows that AGEm and CGEs,m are only
informative about peer group reallocations that preserve this conditional distribution (e.g., if Sm

x̄ is a singleton). See
Section 4.3 for additional details.
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� APE1 is the effect on the average student of replacing an average female peer with an

average male peer.

� CPE11 is the effect on the average male student of replacing an average female peer with

an average male peer.

� CPE01 is the effect on the average female student of replacing an average female peer with

an average male peer.

� AGE1 is the effect on the average student of replacing the average majority-male peer group

with the average majority-female peer group.

� CGE01 is the effect on the average female student of replacing the average majority-male

peer group with the average majority-female peer group.

� CGE11 is the effect on the average male student of replacing the average majority-male

peer group with the average majority-female peer group.

3.3 Reallocation effects

The peer and group effects defined in Sections 3.1 and 3.2 predict the effect of a change in

the composition of a representative individual’s peer group. As discussed above, with a fixed

population any change in the composition of one peer group implies a corresponding change

in the composition of at least one other peer group. As a result, we may also be interested in

the somewhat different question of reallocation effects: how average outcomes are affected by a

feasible change to the entire social network G (Bhattacharya, 2009; Graham et al., 2010). This

section defines both feasible reallocations and the corresponding reallocation effects.

As with peer group effects, the first step is to define the relevant counterfactual, which in this

case is a feasible reallocation. Policymakers generally do not have information on unobserved

types, so the feasible reallocations of interest will be based on the observed characteristics X

and can also include a random component.

Definition 12 (Feasible reallocation). A feasible reallocation is a function GR : RN+1 → GN

such that the counterfactual peer group allocation GR(X, σ) satisfies Assumption 2 for a given

randomization device σ|T ∼ U(0, 1).

For example, a researcher might wish to compare single-gender, balanced, and randomly-

mixed classroom assignments. The randomization device σ allows the researcher to average over

a conditional probability distribution for these group assignments rather than specify a particular

group assignment. Note that feasible reallocations satisfy conditional random assignment (CRA)

by construction.

Definition 13 (Reallocation effects). Let G0 = G0(X, σ) and G1 = G1(X, σ) be two feasible

reallocations. The average reallocation effect of a change from allocation G0 to allocation

G1 is defined as:

ARE(G0,G1) ≡ E(yi1 − yi0) (19)
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and the conditional reallocation effect of that same change is defined as:

CREs(G0,G1) ≡ E(yi1 − yi0|xi = es) (20)

CRE(G0,G1) ≡
[
CRE0 CRE1 · · · CREK

]
(21)

where yiR = yi(p(i,GR)) is the counterfactual outcome for individual i under reallocation R.

Example 5 (Reallocations for gender peer effects). Suppose for convenience that n and G are

even and that exactly half of students are boys. A researcher could define reallocation effects for

any pair of the following feasible reallocations:

� Simple random assignment.

GR(X, σ) is a random sample from the set of group assignments satisfying Assumption 2.

� All classes single-gender.

GR(X, σ) is a random sample from the set of group assignments satisfying Assumption 2

such that
∑
gi=g

xi ∈ {0, n} for all g.

� All classes perfectly mixed.

GR(X, σ) is a random sample from the set of group assignments satisfying Assumption 2

such that
∑
gi=g

xi = n/2 for all g.

Any other allocation that satisfies (CRA) could also be considered, including the original allocation

if applicable.

4 Results

This section demonstrates the relevant properties of the model. The main result is Proposition 4,

which shows conditions under which simple linear regression models can be intepreted as measuring

peer effects or peer group effects as defined in Section 3. For example, peer separability and

random assignment are sufficient conditions for the simple linear-in-means model to be interpreted

as measuring average peer effects. Other propositions consider weaker assumptions and more

complex estimands, and typically show that the effect of interest can be expressed in terms of

either linear regression coefficients or a weighted average of such coefficients.

4.1 Aggregation and separability

Before discussing identification in detail, some preliminary results are helpful. Proposition 1

shows that simple causal effects can typically be interpreted as a weighted average of more

complex effects, with weights that can easily be recovered from the probability distribution of xi:

Proposition 1 (Aggregation). 1. Conditional effects can be aggregated to yield average ef-
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fects:

APEk =

K∑
s=0

Pr(xi = es)CPEs,k (22)

AGEm =

K∑
s=0

Pr(xi = es)CGEs,m (23)

ARE(G0,G1) =

K∑
s=0

Pr(xi = es)CREs(G0,G1) (24)

2. Conditional group effects for a saturated partition can be aggregated to yield group effects

for any other partition:

CGEs,m =

Msat∑
r=1

wrm(µ)CGEsats,r (25)

where CGEsats,r is the conditional group effect for bin r of ithe saturated variable zsati , wrm(µ)

is a weighting function given by:

wrm(µ) =

∑
x̄∈Sm

x̄ :zsat(x̄)=er
M(x̄, n, µ)∑

x̄∈Sm
x̄
M(x̄, n, µ)

−
∑

x̄∈S0
x̄:z

sat(x̄)=er
M(x̄, n, µ)∑

x̄∈S0
x̄
M(x̄, n, µ)

(26)

and:

M(x̄, n, µ) =
(n− 1)!∏K

s=0((n− 1)x̄·s)!

K∏
s=0

µ(n−1)x̄·s
s (27)

is the probability of drawing (n− 1)x̄ from a multinomial distribution with (n− 1) trials

and categorical probability vector µ.

The results in Proposition 1 are not particularly surprising, but are useful to keep in mind

when choosing and comparing model specifications.

Proposition 2 shows how separability assumptions can be employed to simplify the analysis.

In particular, a peer-separable potential outcome function can always be written as the sum

of a set of latent variables: an individual-specific own effect and a set of individual-specific

or pair-specific peer effects. Average and conditional peer effects APE and CPE can also be

expressed in terms of conditional expectations of these latent variables. While neither the own

effect nor the peer effect is directly observable for a given individual, Proposition 4 in the next

section establishes conditions under which average peer effects are identified.

Proposition 2 (Separability). 1. If peer effects are peer-separable (PSE), then each individ-

ual’s potential outcome function can be expressed in the form:

yi(p) = oi +
∑
j∈p

pij (28)
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where oi = o(τi), pij = p(τi, τj) and:

CPEs,k = E(pij |xi = es,xj = ek)− E(pij |xi = es,xj = e0) (29)

APEk = E(pij |xj = ek)− E(pij |xj = e0) (30)

for all observable categories (s, k).

2. If peer effects are peer-separable and own-separable (PSE, OSE), then each individual’s

potential outcome function can be expressed in the form:

yi(p) = oi +
∑
j∈p

pj (31)

where oi = o(τi), pj = p(τj) and:

CPEs,k = APEk = E(pj |xj = ek)− E(pj |xj = e0) (32)

for all observable categories (s, k).

Separability assumptions are convenient but not necessarily correct. Fortunately, they have

testable implications as shown in Proposition 3 below.

Proposition 3 (Testable implications of separability). 1. If peers are randomly assigned con-

ditional on observables (CRA) and peer effects are peer separable (PSE), then:

L(yi|xi, x̄i,x′
ix̄i, zi) = L(yi|xi, x̄i,x′

ix̄i) (33)

2. If peers are randomly assigned conditional on observables (CRA) and peer effects are peer

separable and own separable (PSE, OSE), then:

L(yi|xi, x̄i,x′
ix̄i) = L(yi|xi, x̄i) (34)

or equivalently β3 = 0.

Note that separability is a property of the outcome function y(·, ·) and not the particular

explanatory variables (xi, zi) chosen by the researcher. As a result, the implications in Proposi-

tion 3 hold for any (xi, zi), though the power of a test based on these implications depends on

the choice.

4.2 Identification of peer and group effects

Proposition 4 below shows identification under a simple random assignment research design. The

identification analysis also suggests some simple estimators. Proposition 5 later in this section

shows identification under conditional random assignment, and Proposition 8 in Section 5 shows

identification under a more complex two-stage assignment design.

Proposition 4 (Identification with random assignment). 1. If peers are randomly assigned

(RA) and peer effects are peer separable (PSE), then peer effects APE and CPE are
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identified:

APEk =
α2k

n− 1
(35)

CPEs,k =
β2k + β3sk
n− 1

(36)

where (α2k, β2k, β3sk) are coefficients from the best linear predictors:

L(yi|xi, x̄i) ≡ α0 + xiα1 + x̄iα2 (37)

L(yi|xi, x̄i,x′
ix̄i) ≡ β0 + xiβ1 + x̄iβ2 + xiβ3x̄

′
i (38)

i.e., α2k is the kth element of α2, β2k is the kth element of β2, β3sk is the element in row

s and column k of β3 for all s > 0, and β30k = 0.

2. If peers are randomly assigned (RA), then group effects AGE and CGE are identified:

AGEm = γ2m (39)

CGEs,m = δ2m + δ3sm (40)

where (γ2m, δ2m, δ3sm) are coefficients from the best linear predictors:

L(yi|xi, zi) ≡ γ0 + xiγ1 + ziγ2 (41)

L(yi|xi, zi,x′
izi) ≡ δ0 + xiδ1 + ziδ2 + xiδ3z

′
i (42)

i.e., γ2m is element m of γ2, δ2m is element m of δ2, δ3sm is element (s,m) of δ3 for all

s > 0, and δ30m = 0 for all m.

Proposition 4 shows conditions under which each causal peer group effect defined in Section 3

can be expressed in terms of a linear regression model.

Example 6 (Peer-separable gender effects). Using the data described in the previous examples,

suppose Researcher A estimates the effect of male classmates on test scores using the conventional

linear-in-means model (37). Under the assumption of peer separability, Part 2 of Proposition 4

allows Researcher A to interpret the coefficient on x̄i as the effect on the average student of

replacing the average female classmate with the average male classmate. Note that there are no

other control variables, and gender does not appear in the underlying structural model; instead

this analysis is interpreted as an analysis of heterogeneity. Another researcher with the same

data but other xi variables - race, ethnicity, language spoken at home, immigration status, etc. -

could explore those other aspects of heterogeneity either separately or in any combination.

Now suppose that Researcher B has the same data, but estimates the heterogeneous linear-in-

means model (38). Part 2 of Proposition 4 also shows that the assumption of peer-separability

allows Researcher B to interpret the coefficient on x̄i as the effect on the average female student

of replacing the average female classmate with the average male classmate, and the . Adding

the coefficient on the interaction term xix̄i gives the effect on the average male student of

replacing the average female classmate with the average male classmate. Note that a finding

of heterogeneity (i.e. a nonzero coefficient on the interaction term) by Researcher B does not
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invalidate Researcher A’s analysis based on equation (37), as that analysis can still be interpreted

as averaging these heterogeneous effects across all treatment units. Both specifications are valid,

in the sense of recovering an estimand of interest.

Although the assumption of peer separability provides a simple interpretation of linear-in-

means results, empirical researchers have shown increasing interest in contextual effects that go

beyond the linear-in-means model, and have repeatedly found evidence for such nonlinearities.

Example 7 (Nonlinear gender effects). Suppose that Researcher C has the same data as

Researcher A, but divides peer groups into majority-male and majority female; i.e., zi = 1 if

x̄i > 0.5 and zi = 0 if x̄i ≤ 0.5, and estimates a regression of yi on (xi, zi). Then part 1 of

Proposition 4 says that the coefficient on zi can be interpreted as the effect on the average student

of replacing the average (randomly constructed) majority-female peer group with the average

(randomly constructed) majority-male peer group. In addition, these averages can be identified

separately for male and female students from a regression of yi on (xi, zi,x
′
izi). Again, the results

in Proposition 4 apply regardless of the researcher’s choice of how to construct zi. Researcher

C could compare majority-male versus majority-female peer groups, or could compare all-male,

all-female, and mixed peer groups. Note that a finding of nonlinearity by Researcher C could

invalidate the assumption of peer separability and thus invalidate the results of Resesarchers A

and B.

Although identification and interpretation are simplest with random assignment, many of

the results in Proposition 4 also hold under conditional random assignment while others require

minor modfications. To show this it is first necessary to show (in Lemma 1 below) that the

conditional expectation function is the same under random assignment and conditional random

assignment.

Lemma 1 (Conditional random assignment). If peers are randomly assigned conditional on

observable characteristics (CRA), then:

E(yi|xi = x, x̄i = x̄) = E(yi(p̃)|xi = x, x̄i(p̃) = x̄) (43)

where p̃ is a purely random draw of (n− 1) peers from N \ {i}.

Proposition 5, which shows identification under conditional random assignment, then follows.

Proposition 5 (Identification with conditional random assignment). 1. If peers are randomly

assigned conditional on observable characteristics (CRA) and peer effects are peer separable

(PSE), then peer effects APE and CPE are identified:

APEk =

K∑
s=0

µs
β2k + β3sk
n− 1

(44)

CPEs,k =
β2k + β3sk
n− 1

(45)

where (β2k, β3sk) are defined as in equation (38).
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2. If peers are randomly assigned conditional on observable characteristics (CRA), then group

effects AGE and CGE are identified:

AGEm =

K∑
s=0

Msat∑
r=1

µswrm(µ)(δsat2r + δsat3sr) (46)

CGEs,m =

Msat∑
r=1

wrm(µ)(δsat2r + δsat3sr) (47)

where δsat = (δsat0 , δsat1 , δsat2 , δsat3 ) are the coefficients from estimating equation (42) with

saturated group variable zsati .

While Proposition 5 is more general than Proposition 4, this generality comes at the cost that

some estimands are weighted averages of regression coefficients rather than just the coefficients.

The reason this is the case is that both peer effects and group effects are defined in terms

of a hypothetical randomly-assigned peer group, so some reweighting is required when the

observed peer group is randomly assigned based on observed characteristics. As in Proposition 1,

the probability weights in Proposition 5 can be recovered either directly from the probability

distribution of xi or by simulating random draws from that distribution.

4.3 Identification of reallocation effects

Proposition 6 below describes how the reallocation effects defined in Section 3.3 can be described

in terms of the estimands defined in Section 3.1.

Proposition 6 (Reallocation effects). Let G0,G1 be two feasible reallocations, and let x̄iR =

x̄i(T,GR) and ziR = z(x̄iR) be the counterfactual peer group composition of individual i under

reallocation GR. Then:

1. If (S1
x̄, . . . ,S

M
x̄ ) are singletons, and Pr(x̄i0 ∈ S0

x̄) = Pr(x̄i1 ∈ S0
x̄) = 0, then:

ARE(G0,G1) =

K∑
s=0

µsE(zi1 − zi0|xi = es)CGE′
s (48)

CREs(G0,G1) = E(zi1 − zi0|xi = es)CGE′
s (49)

where CGEs is row s of the matrix CGE.

2. If peer effects are peer separable (PSE), then:

ARE(G0,G1) = (n− 1)

K∑
s=0

µsE(x̄i1 − x̄i0|xi = es)CPE′
s (50)

CREs(G0,G1) = (n− 1)E(x̄i1 − x̄i0|xi = es)CPE′
s (51)

where CPEs is row s of the matrix CPE.
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3. If peer effects are peer separable and own separable (PSE, OSE), then:

ARE(G0,G1) = 0 (52)

CREs(G0,G1) = (n− 1)E(x̄i1 − x̄i0|xi = es)APE′ (53)

Parts 2 and 3 of Proposition 6 show that separability allows the effect of an alternative

allocation to be inferred straightforwardly from average or conditional peer effects. In contrast,

Part 1 of Proposition 6 indicates an important limitation on the use of nonlinear peer effect

regressions to predict the results of a reallocation: the partition of x̄i must assign a unique value

of zi for each distinct value of x̄i in the support of either reallocation. Values of x̄i outside of that

support can be pooled. The intuition here is that within a pooled category, the distribution of zi

does not pin down the distribution of x̄i, so two allocation rules may have the same distribution

of zi but not the same distribution of x̄i.

Example 8 (The effects of a classroom reallocation by gender). Suppose the researcher estimates

a nonlinear model using five categories in constructing zi: all-boy (x̄i = 1), majority-boy

(0.5 < x̄i < 1), balanced (x̄i = 0.5), majority-girl (0.0 < x̄i < 0.5), and all-girl (x̄i = 0). The

all-boy, balanced and all-girl categories are singletons, while the majority-boy and majority-girl

categories are pooled. Proposition 6 implies those results can be used to predict the result of a

change from balanced to gender-segregated classrooms, or from the baseline random allocation to a

balanced or gender-segregated allocation. However, the results cannot be used to predict the effect

of a change from balanced to majority-boy and majority-girl classrooms. The natural solution to

this issue is to remember that the researcher chooses the partition, and can in principle always

choose a partition rich enough to identify (conditional) average reallocation effects. For example,

one might redefine categories to include singleton categories for x̄i = 0.5, x̄i = 0.25 and x̄i = 0.75

and then use the results to compare a balanced or random allocation to one in which roughly half

of classrooms are 75% boys and the other half are 75% girls. In practice, the usual bias/variance

trade off applies to the choice of partitions. There may not be enough exactly-balanced classrooms

for adequate statistical precision, and some pooling of nearly-balanced classrooms can increase

precision at a cost of bias from aggregating categories with dissimilar average effects.

4.4 Estimation

Although the primary focus of this paper is on identification, the identification results above are

constructive and suggest simple plug-in estimators that will be consistent and asymptotically

normal in a wide variety of settings.

Propositions 4 and 5 express peer and group effects in terms of best linear predictors

(α, β, γ, δ, δsat), or weighted averages whose weights depend on µ = E(xi). Let θ ≡ (µ, α, β, γ, δ, δsat)

and let θ̂ ≡ (µ̂, α̂, β̂, γ̂, δ̂, δ̂sat) be a consistent and asymptotically normal estimator constructed

from a sample of N individuals:

√
N
(
θ̂ − θ

)
→D N(0,Σ) (54)

with consistent covariance matrix estimator Σ̂ →P Σ. In a typical application, the data will be
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constructed from a random sample of G groups, µ̂ = 1
N

∑N
i=1 xi will be the sample average, the

remaining elements of θ̂ will be linear regression coefficients, and Σ̂ will be robust to group-level

clustering.

Propositions 4 and 5 suggest a natural set of plug-in estimators based on the elements of θ̂:

ÂPEk =

 α̂2k

n−1 if (PSE, RA)∑K
s=0 µ̂sĈPEsk if (PSE, CRA)

ĈPEsk =
{
β̂2k+β̂3sk

n−1 if (PSE, CRA)

ÂGEm =

γ̂2m if (RA)∑K
s=0 µ̂sĈGEsm if (CRA)

ĈGEsm =

δ̂2m + δ̂3sm if (RA)∑Msat

r=0 wrm(µ̂)(δ̂sat2r + δ̂sat3sr) if (CRA)

Since these estimators are differentiable functions of θ̂, they will be consistent and asymptotically

normal, with an asymptotic covariance matrix that can be derived using the delta method.

Similarly, Proposition 6 provides a starting point for estimating reallocation effects by a

plug-in method. Estimating reallocation effects is complicated by the fact that the set of feasible

reallocations in the population depends on µ. However, since all feasible reallocations are defined

as functions of X and the randomization device σ, the set of feasible reallocations in a given

sample depends only on µ̂.

ÂRE(G0,G1) =

0 if (PSE, OSE)∑K
s=0 µ̂sĈREs(G0,G1) if (PSE, CRA) or (singletons, CRA)

ĈREs(G0,G1) =


(n− 1)∆x̄s(G0,G1, µ̂)ÂPE

′
if (PSE, OSE, CRA)

(n− 1)∆x̄s(G0,G1, µ̂)ĈPE
′
s if (PSE, CRA)

∆zs(G0,G1, µ̂)ĈGE
′
s if (singletons, CRA)

where:

∆x̄s(G0,G1, µ̂) ≡ E(x̄i1 − x̄i0|xi = es, µ̂) (55)

∆zs(G0,G1, µ̂) ≡ E(zi1 − zi0|xi = es, µ̂) (56)

The asymptotic properties of these estimators depend on the reallocations chosen by the researcher,

because ∆x̄s(G0,G1, µ̂) and ∆zs(G0,G1, µ̂) are not necessarily continuous or differentiable in

µ̂. If they are, these estimators will be consistent and asymptotically normal.

Note that these estimators have been defined in terms of a set of categories for xi and bins

for zi (if applicable) that have been determined by the researcher in advance of the data. This

scenario fits many applications in which the researcher has a specific research question (ideally

in a pre-analysis plan) and the individual characteristics relevant to that question are naturally

discrete. When individual characteristics of interest are continuous or high-dimensional, or when
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peer groups are large (so that there are many possible bins for defining zi), researchers may

need to construct categories and bins in a data-driven manner that balances model flexibility

with statistical precision. Tree-based methods for estimating conditional average treatment

effects such as those developed in Athey and Imbens (2016) or Wager and Athey (2018) can be

adapted to this setting, though this adaptation is beyond the scope of this paper and left to

future research.

5 Extension: Multi-stage assignment

Although simple random assignment is the ideal setting for studying peer effects, many peer

effect studies are based on a more complex research design in which individuals are non-randomly

assigned to large groups and then randomly assigned to smaller groups within those large groups.

For example, classroom peer effects are typically estimated using a research design associated

with Hoxby (2000): panel data with multiple grade cohorts within multiple schools is used in

combination with linear fixed effects regression models to account for nonrandom selection into

schools. The key identifying assumption of this research design is that selection into a given grade

cohort within a school is random (due to random timing of birth) conditional on the nonrandom

selection of school. However, the linear fixed effects implementation is quite restrictive, treating

the causal effect of interest as a fixed parameter and imposing other coefficient homogeneity

restrictions that may or may not be reasonable in a given setting.

This section adds a general multi-stage selection design to the potential outcomes framework

developed in Section 2, demonstrates conditions under which the linear fixed effects regression

model will recover causal peer effects, and proposes alterative strategies for applications in which

those conditions do not hold.

Example 9 (Public and private schools). Consider a simplified classorom peer effects setting in

which students are rich (xi = 1) or poor (xi = 0) and attend the local public (ℓ = 1) or private

(ℓ = 2) school. Both schools have a mix of rich and poor students, but rich students are more

likely than poor students to attend the private school. Within each school, students are randomly

assigned to cohorts/classrooms as a result of random timing of birth.

5.1 Model

The model is as defined in Section 2 with additional assumptions and definitions as given below.

In the interest of space and clarity, the analysis will focus on the case where peer separability

holds.

Each peer group belongs to a location ℓ ∈ L ≡ {1, . . . , L}:

L ≡


ℓ1

ℓ2
...

ℓN

 ≡


ℓ(g1)

ℓ(g2)
...

ℓ(gN )

 ≡ L(G) (57)

where ℓi is the location for individual i and ℓ : G → L is a known function. To simplify
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exposition, each location is assumed to include r peer groups, which implies that G = rL and

N = nG = nrL.

Assignment to location will typically depend on unobserved type:

Assumption 6 (Locations and types). Each individual’s type is an independent draw from a

type distribution that varies by location:

Pr(T|L) =
N∏
i=1

fτ |ℓ(τi, ℓi) (58)

where fτ |ℓ : T × L → [0, 1] is some unknown discrete conditional PDF.

Assumption 6 allows the distribution of uobserved types to vary across locations. As in

Assumption 1, the arbitrary ordering makes independence a mostly innocuous assumption.

Definition 14 (Random assignment by location). Peer groups are randomly assigned by

location (RAL) if:

G ⊥⊥ T|L (RAL)

Random assignment by location is stated here as an optional assumption but will be needed

for all results in Section 5

5.2 Identification with simple fixed effects models

Most empirical research in this setting uses linear models with constant coefficients and a location

fixed effect, so a natural starting point is to establish conditions under which that procedure

will recover conditional average peer effects. Intiutitively, fixed effects models allow location

to matter for the outcome, but only in ways that shift the outcome by the same amount for

everyone at that location.

Definition 15 (Constant shifts). Suppose that peer separability (PSE) and own separability

(OSE) both hold. Then own effects have constant shifts (CS) if:

E(oi|xi = ek, ℓi = ℓ)− E(oi|xi = e0, ℓi = ℓ) = E(oi|xi = ek)− E(oi|xi = e0) (CS)

for all (k, ℓ).

In addition, the location fixed effect is taken to reflect exclusively differences in own effects,

and not systematic differences in peer effects.

Definition 16 (Location invariance). Suppose that peer separability (PSE) holds. Peer effects

are location invariant (LI) if:

E(pij |xi = es,xj = ek, ℓi = ℓ, ℓj = ℓ′) = E(pij |xi = es,xj = ek) (LI)

for all (s, k, ℓ, ℓ′).

These two assumptions can then be used to support the use of simple fixed effects models to

estimate peer effects in this setting.
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Proposition 7 (Identification via fixed effects regression). Suppose that peer groups are randomly

assigned by location (RAL), and the outcome function satisfies peer separability (PSE), own

separability (OSE), location invariance (LI) and constant shifts (CS). Then:

E(yi|xi = x, x̄i = x̄, ℓi = ℓ) = αℓ0 + xα1 + x̄α2 (59)

and:

APEk = CPEsk = α2k/(n− 1) (60)

for all (s, k).

Proposition 7 gives conditions under which a researcher can estimate a standard linear fixed

effects model and interpret the coefficients on average peer characteristics as reflecting an average

peer effect. The example below suggests how strong these assumptions would be in a typical

application.

Example 10. Continuing the two-school example, the assumptions needed for Proposition 7

would allow:

� Rich students to be systematically better/worse students (own effect) than poor students.

� Rich students to be systematically better/worse peers (peer effect) than poor students.

� Private school students to be systematically better/worse students than public school students

but would not allow:

� Private school students to be systematically better/worse peers than public school students.

This would violate location invariance (LI).

� The student quality gap between rich and poor students to vary across the two schools. This

would violate constant shifts (CS).

5.3 Identification with heterogeneous-coefficient models

Relaxing the assumptions in Proposition 7 yields a set of heterogeneous-coefficient regression

models that can be given varying causal intepretations. For example, random assignment by

location implies that peer effects can be measured separately within each location even without

any restrictions on heterogeneity across locations.

Definition 17 (Location-specific regression models). The coefficients of the location-specific

linear in means models are defined as the vectors αℓ ≡ (αℓ0, α
ℓ
1, α

ℓ
2), and β

ℓ ≡ (βℓ0, β
ℓ
1, β

ℓ
2, β

ℓ
3)

such that:

Lℓ(yi|xi, x̄i) ≡ αℓ0 + xiα
ℓ
1 + x̄iα

ℓ
2 (61)

Lℓ(yi|xi, x̄i,x′
ix̄i) ≡ βℓ0 + xiβ

ℓ
1 + x̄iβ

ℓ
2 + xiβ

ℓ
3x̄

′
i (62)

where Lℓ(·|·) is the best linear predictor conditional on ℓi = ℓ, i.e.

αℓ = E(w′
iwi|ℓi = ℓ)−1E(w′

iyi|ℓi = ℓ) where wi = (1,xi, x̄i) (63)

βℓ = E(w′
iwi|ℓi = ℓ)−1E(w′

iyi|ℓi = ℓ) where wi = (1,xi, x̄i, vec(x
′
ix̄i))
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Equations (61) and (62) correspond to standard heterogeneous-coefficient linear panel data

models. Wooldridge (2010, p. 377-381) describes estimation and testing procedures for this class

of models. For the purpose of discussing identification, these location-specific coefficients will

be taken as given. In a given sample, there will be a bias/variance trade-off that may make it

more practical to estimate a more restrictive regression model as an approximation to the fully

heterogeneous model.

Definition 18 (Location-specific peer effects). Let location-specific peer effects for location

ℓ be defined as the average effect of replacing a randomly-selected peer from the base category

with a randomly-selected peer from another category and in the same location:

APEℓk ≡ E (yi({j} ∪ q̃)− yi({j′} ∪ q̃)|xj = ek,xj′ = e0, ℓi = ℓj = ℓ) (64)

CPEℓs,k ≡ E (yi({j} ∪ q̃)− yi({j′} ∪ q̃)|xj = ek,xj′ = e0,xi = es, ℓi = ℓj = ℓ)

where q̃ is a purely random draw of (n− 2) peers from N \ {i, j}.

As shown in result 1 of Proposition 8 below, Proposition 4 can be applied location-by-location

to relate location-specific coefficients to the corresponding location-specific peer effects. These

location-specific peer effects can then be used to find reallocation effects for any feasible reallo-

cation across peer groups that keeps every individual within the same location. Unfortunately,

within-location peer effects are generally insufficient to measure the effect of any reallocation

across locations. This is a critical limitation that is typically not addressed in empirical work, as

many reallocations of interest represent shifts across rather than within locations.

Example 11. The within-location coefficients can be used to predict the effect of replacing a rich

private school student with a poor private school student, or the effect of replacing a rich public

school student with a poor public school student. But they cannot predict the effect of replacing a

rich private school student with a poor public school student, or of replacing the average rich

student in the population with the average poor student in the population.

In order to predict the effects of reallocations across locations, the variability of peer effects

across locations can be restricted using either the previously-defined concept of location invariance

or the slightly weaker restriction of partial location invariance.

Definition 19 (Partial location invariance). Peer effects are partially location invariant

(PLI) if they are peer separable and:

E(pij |xj = e0, ℓj = ℓ) = E(pij |xj = e0) (PLI)

for all ℓ.

Partial location invariance essentially requires that location invariance applies to at least one

oberved type. For convenience, this observed type is taken to be the base type.

Results 2 and 3 in Proposition 8 below show that either form of location invariance can allow

(non-location-specific) peer effects to be expressed as a weighted average of location-specific

effects. They are therefore identified and can be used to predict the result of a feasible reallocation

across locations.
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Proposition 8 (Identification under within-location random assignment). 1. If peers are ran-

domly assigned by location (RAL) and peer effects are peer separable (PSE), then location

specific peer effects are identified:

CPEℓs,k =
βℓ2k + βℓ3sk
n− 1

(65)

APEℓk =
αℓ2k
n− 1

(66)

for each location ℓ ∈ L.

2. If peers are randomly assigned by location (RAL) and peer effects are peer separable and

location invariant (PSE, LI), then peer effects are identified:

CPEs,k =
E(βℓi2k) + E(βℓi3sk)

n− 1
(67)

APEk =
E(αℓi2k)

n− 1
(68)

for all (s, k).

3. If peers are randomly assigned by location (RAL) and peer effects are peer separable, own

separable and partially location invariant (PSE, OSE, PLI), then peer effects are identified:

CPEs,k = APEk =
E(αℓi2k|xi = ek)

n− 1
(69)

for all (s, k).

To summarize the results in this section, designs based on random cohorts are common in

the applied literature but imply complications beyond those in a simple or even conditional

random assignment design. Researchers using such designs have the option of imposing strong

restrictions on heterogeneity (as in Proposition 7), by combining somewhat weaker restrictions

with more explicit handling of hetereogeneous coefficients (as in Proposition 8), or by noting

that the results only apply to within-location comparisons and reallocations.

6 Extension: Direct contextual effects

As discussed in the introduction, much of the applied literature treats contextual effects as if they

were direct and constant. That is, the effect peers have on a particular individual is a parametric

function of a limited set of own and peer characteristics. If the researcher has access to the

correctly-specified model and full set of relevant characteristics, identification and interpretation

of both peer effects and reallocation effects are dramatically simplified. Otherwise, the results

may be subject to substantial omitted variables bias. This section considers and analyizes direct

contextual effects as a special case of the model developed in previous sections.

Definition 20 (Direct contextual effects). Peer effects are said to be direct contextual effects

(DCE) in the vector of characteristics x∗
i = x∗(τi) ∈ RK∗

if there exists an unknown function
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h : RnK∗ → R and scalar ϵi = ϵ(τi) such that:

y
(
τi, {τj}gj=gi

)
= h

(
x∗(τi), {x∗(τj)}gj=gi

)
+ ϵ(τi) (DCE)

and E(ϵi|x∗
i ) = 0.

The key restriction in (DCE) is that the peer effect is a fixed function of a specific set of

characteristics. The relevant characteristics can be taken as discrete for tractability. In isolation,

the assumption of direct contextual effects can be made trivially true by defining x∗
i as a unit

vector of K∗ = (T − 1) indicator variables for each of the T unobserved types. The content of

the assumption therefore depends on the specific characteristics in x∗
i . In particular, the vector

x∗
i of relevant variables and the vector xi of available variables do not necessarily coincide.

Definition 21 (No omitted variables). A researcher is said to have no omitted variables

(NOV) if the outcome has direct contextual effects in the observed characteristics xi:

xi = x∗
i (NOV)

The assumption of no omitted variables is very strong, as it requires that the researcher

includes every potentially relevant peer characteristic in the regression model.

6.1 Separability and functional form

Assumption (DCE) does not restrict the functional form for h(·, ·), but Proposition 9 below

shows other assumptions may pin down a convenient functional form.

Proposition 9 (Separability and direct contextual effects). 1. If direct contextual effects are

peer separable (DCE, PSE), then each individual’s potential outcome function can be

expressed in the form:

yi(p) = oi +
∑
j∈p

pij (70)

= h1(x
∗
i ) + ϵi +

∑
j∈p

h2(x
∗
i ,x

∗
j )

= ψ0 + x∗
iψ1 + x̄∗

pψ2 + x∗
iψ3x̄

∗(p)′ + ϵi (if x∗ is categorical)

where h1 : RK∗ → R and h2 : R2K∗ → R are functions and ψ ≡ (ψ0, ψ1, ψ2, vec(ψ3)) is

some vector of coefficients.

2. If direct contextual effects are peer separable and own separable (DCE, PSE, OSE), then

each individual’s potential outcome function can be expressed in the form:

yi(p) = oi +
∑
j∈p

pj (71)

= h1(x
∗
i ) + ϵi +

∑
j∈p

h3(x
∗
j )

= ψ0 + x∗
iψ1 + x̄∗(p)ψ2 + ϵi (if x∗ is categorical)
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where h1 : RK∗ → R and h3 : RK∗ → R are functions and ψ ≡ (ψ0, ψ1, ψ2) is some vector

of coefficients.

When peer separability and own separability are assumed, direct contextual effects can

be written in terms of group-level averages of individual (if both forms of separability are

assumed) or pairwise (if only peer separability is assumed) characteristics. If these separability

assumptions are combined with a categorical specification of x∗, the model reduces to the

standard linear-in-means contextual effects model.

6.2 Identification and omitted variables bias

Direct contextual effects do not violate the conditions for Propositions 4, 5, or 8, so heterogeneous

and conditional average effects continue to be identified under the conditions described in those

propositions. Proposition 10 below shows additional identification results that apply when

contextual effects are direct.

Proposition 10 (Identification of direct contextual effects). 1. If peers are conditionally ran-

domly assigned (CRA) and peer effects are direct contextual effects with no omitted variables

(DCE, NOV), then h(·, ·) is identified:

h
(
x,
{
x1, . . . ,xn−1

})
= E (yi |xi = x, x̄i = x̄ ) (72)

for all values of x and x̄ ≡
(∑n−1

j=1 xj
)
/(n− 1) on the support of (xi, x̄i).

2. If peers are randomly assigned by location (RAL) and peer effects are peer-separable direct

contextual effects with no omitted variables (PSE, DCE, NOV), then CPE and APE are

identified:

CPEs,k =
E(βℓi2k) + E(βℓi3sk)

n− 1
(73)

APEk =
E(αℓi2k)

n− 1
(74)

The first result in Proposition 10 shows that the “structural” parameters of the direct

contextual effects model are identified. The second result shows that direct contextual effects

are helpful in securing identification with random assignment by location, essentially because

they imply location invariance.

Unfortunately, the data requirements for Proposition 10 are extremely demanding: the

(NOV) assumption requires data on everything about each person that affects their influence

on other people. In the more likely case in which the researcher has data on some subset of

those characteristics, conventional omitted variables concepts apply. To simplify the discussion,

suppose that the direct contextual effects take the linear in means form:

h(x∗
i ,
{
x∗
j

}
j∈p

) = ψ0 + x∗
iψ1 + x̄∗

i (p)ψ2 (75)

that peer groups are randomly assigned (RA) and that x∗
i = (xi,ui), where ui is some vector of
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omitted individual-level variables. Then:

yi = ψ0 + xiψ11 + uiψ12 + x̄iψ21 + ūiψ22 + ϵi (76)

Let L(ui|xi) = π0 + xiπ1. Then by (RA), L(ui|xi, x̄i) = π0 + xiπ1, L(ūi|xi, x̄i) = π0 + x̄iπ1,

and:

L(yi|xi, x̄i) = L(ψ0 + xiψ11 + uiψ12 + x̄iψ21 + ūiψ22 + ϵi|xi, x̄i) (77)

= ψ0 + xiψ11 + (π0 + xiπ1)ψ12 + x̄iψ21 + (π0 + x̄iπ1)ψ22

= (ψ0 + π0ψ12 + π0ψ21)︸ ︷︷ ︸
α0

+xi (ψ11 + π1ψ12)︸ ︷︷ ︸
α1

+x̄i (ψ21 + π1ψ22)︸ ︷︷ ︸
α2

In other words, ψ21 (the direct effect of x̄i) is identified from (X,Y,G) and can be estimated by

the conventional OLS regression coefficient α only if all omitted peer characteristics are either

irrelevant (ψ22 = 0) or uncorrelated with the included characteristics (π1 = 0). Otherwise the

conventional regression yields a biased estimate of ψ21. This result is a simple variation on the

textbook omitted variables problem, but bears some emphasis: random assignment of peers does

not imply random assignment of individual peer characteristics, and there is typically substantial

correlation among an individual’s characteristics.

6.3 Peer group reallocations

If the data requirements for Proposition 10 are met, the assumption of direct contextual effects

has the potential advantage of allowing the direct comparison of predicted outcomes across

any two specific allocations. That is, for any individuals i, j, j′ and set of peers q, the effect of

replacing peer j with peer j′ is:

yi(j ∪ q)− yi(j
′ ∪ q) = h

(
x∗
i ,
{
x∗
j ,x

∗
r

}
r∈q

)
− h

(
x∗
i ,
{
x∗
j′ ,x

∗
r

}
r∈q

)
(78)

which depends only on X and q. For example, if ψ2 is the direct causal effect of x̄∗
i on yi,

then any reallocation of peers that changes x̄∗
i by ∆ units changes yi by ∆ψ2 units. The direct

contextual effects model can thus be used to predict exact outcome differences between any two

alternative allocations or allocation rules.

In contrast, knowledge of heterogeneous and conditional average peer effects only allows for

comparisons within the class of alternative allocation mechanisms described in Section 4.3: those

in which groups are assigned randomly conditional on the observable characteristics in the data.

Returning to the classroom gender effects example, the conditional average peer effect APE can

be interpreted as the average effect of replacing a randomly selected male peer with a randomly

selected female peer. In contrast, if direct contextual effects are assumed in which x∗
i is a gender

indicator, then the contextual effects parameter ψ2 is the effect of replacing any male peer with

any female peer.

However, just as the requirement of complete data on x∗
i represents a barrier to identification

of direct contextual effects, it also represents a potential barrier to using the results for policy

analysis. For example, suppose that a student’s academic achievement is a known function of
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peer gender and the number of peers with an attention-deficit/hyperactivity disorder (ADHD).

School policymakers cannot directly change a student’s gender or ADHD status, so any change

in peer characteristics can only be implemented by reallocating individuals. Since measured

ADHD rates are much higher for boys, a reallocation by gender alone will induce a corresponding

reallocation by ADHD. Therefore, policymakers must know the consequences of a candidate

reallocation for all elements of x∗
i in order to use direct contextual effect parameters in predicting

the consequences of that reallocation for outcomes. Even if researchers are able to collect detailed

data on peer characteristics sufficient to identify direct contextual effects, those results are only

usable by policymakers with similarly detailed data.

7 Conclusion

The results established here have several implications for empirical research on contextual peer

effects, and on their potential application to policy.

The first implication is that simple model specifications based on categorical explanatory

variables will often be more informative than “kitchen sink” regressions that attempt to incorpo-

rate every potentially relevant peer characteristic available in the data. A simple specification

that uses a single binary peer characteristic (high/low income, black/white, male/female, etc.)

can be interpreted as measuring the difference in conditional average peer effects across the two

categories under relatively weak assumptions. In constrast, a regression with many related peer

characteristics is difficult to interpret without imposing the very strong assumptions needed to

identify direct contextual effects: i.e., that there are no relevant omitted peer characteristics that

are correlated with observed peer characteristics.

A second implication is that researchers can estimate multiple distinct but logically consistent

regressions, with each providing information on a different comparison. This is particularly

relevant in a literature heavily focused on estimating a variety of specifications using a few

key data sets such as the Add Health survey or the longitudinal student records of those U.S.

states and Canadian provinces that make such data available. For example, one researcher

might estimate a regression with peer parental income as the explanatory variable, while another

estimates a similar regression with the same data using peer parental education as the explanatory

variable. If the researchers’ goal is to measure direct contextual effects, at least one of these

models is misspecified. In contrast, if the researchers’ goal is to measure conditional average peer

effects across identifiable groups, each of these models is informative and any apparent conflict

between their results can be reconciled by estimating a third regression that includes both peer

variables and their interaction.

A third implication is that the dimension and mechanism of randomization is important

in ways that are not often appreciated. Conditional average peer effects describe the effect

of replacing a randomly selected peer from one category with a randomly selected peer from

another category. This corresponds to the effect of replacing any peer from one category with

any peer from the other category only if peer effects are homogeneous within categories, i.e., the

researcher has estimated a direct contextual effect. Similarly, research designs based on random

cohorts within nonrandomly assigned schools (locations) only identify the consequences of a
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reallocation within the school (location). Consequences of reallocations across schools are only

identified under quite restrictive homogeneity assumptions.

Finally, reinterpreting conventional peer effects as measuring heterogeneity in treatment

effects opens up several opportunities for further research. In particular, the analysis in this

paper takes the construction of categories as a given choice of the researcher. Recent advances

in the use of machine learning and other tools for more systematically analyzing treatment

effect heterogeneity (Wager and Athey, 2018) may be adapted to this setting, and open up the

possibility of identifying robust predictors of productive peers and peer groups from data.
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Not-for-publication Appendix

Proof for Proposition 1

These results follow from the definition of each item. Part 1 of the proposition can be derived as

follows:

K∑
s=0

CPEs,k Pr(xi = es) =

K∑
s=0

E (yi({j} ∪ p̃)− yi({j′} ∪ p̃)|xi = es,xj = ek,xj′ = e0) Pr(xi = es)

(79)

= E (yi({j} ∪ p̃)− yi({j′} ∪ p̃)|xj = ek,xj′ = e0) (80)

= APEk (81)

K∑
s=0

CGEs,m Pr(xi = es) =

K∑
s=0

(E(yi(p̃)|xi = es, zi(p̃) = em)− E(yi(p̃)|xi = es, zi(p̃) = e0)) Pr(xi = es)

(82)

= E(yi(p̃)|zi(p̃) = em)− E(yi(p̃)|zi(p̃) = e0) (83)

= AGEm (84)

Part 2 of the proposition can be derived as follows. First note that for any m:

E

(
yi(p̃)

∣∣∣∣∣ xi = es,

zi(p̃) = em

)
=

Msat∑
r=0

E

(
yi(p̃)

∣∣∣∣∣ xi = es,

zsati = er

)
Pr(zsati (p̃) = er|zi(p̃) = em) (85)

= E

(
yi(p̃)

∣∣∣∣∣ xi = es,

zsati = e0

)
Pr(zsati (p̃) = e0|zi(p̃) = em) (86)

+

Msat∑
r=1

E

(
yi(p̃)

∣∣∣∣∣ xi = es,

zsati = er

)
Pr(zsati (p̃) = er|zi(p̃) = em)

= E

(
yi(p̃)

∣∣∣∣∣ xi = es,

zsati = e0

)1−
Msat∑
r=1

Pr(zsati (p̃) = er|zi(p̃) = em)


(87)

+

Msat∑
r=1

E

(
yi(p̃)

∣∣∣∣∣ xi = es,

zsati = er

)
Pr(zsati (p̃) = er|zi(p̃) = em)

= E

(
yi(p̃)

∣∣∣∣∣ xi = es,

zsati = e0

)
+

Msat∑
r=1

CGEsats,r Pr(zsati (p̃) = er|zi(p̃) = em)

(88)
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Substituting this result into the definition of CGEs,m produces:

CGEs,m = E

(
yi(p̃)

∣∣∣∣∣ xi = es,

zi(p̃) = em

)
− E

(
yi(p̃)

∣∣∣∣∣ xi = es,

zi(p̃) = e0

)
(89)

=

E(yi(p̃)
∣∣∣∣∣ xi = es,

zsati = e0

)
+

Msat∑
r=1

CGEsats,r Pr(zsati (p̃) = er|zi(p̃) = em)

 (90)

−

E(yi(p̃)
∣∣∣∣∣ xi = es,

zsati = e0

)
+

Msat∑
r=1

CGEsats,r Pr(zsati (p̃) = er|zi(p̃) = e0)


=

Msat∑
r=1

CGEsats,r

(
Pr(zsati (p̃) = er|zi(p̃) = em)

−Pr(zsati (p̃) = er|zi(p̃) = e0)

)
(91)

For any (r,m):

Pr(zsati (p̃) = er|zi(p̃) = em) =
Pr(zi(p̃) = em ∩ zsati (p̃) = er)

Pr(zi(p̃) = em))
(92)

=
Pr(x̄i(p̃) ∈ x̄ : z(x̄) = em ∩ zsat(x̄) = er)

Pr(x̄i(p̃) ∈ x̄ : z(x̄) = em)
(93)

=

∑
x̄∈Sm

x̄ :zsat(x̄)=er
Pr(x̄i(p̃) = x̄)∑

x̄∈Sm
x̄
Pr(x̄i(p̃) = x̄)

(94)

By construction, (n− 1)x̄i(p̃) is a random draw from the multinomial distribution, so:

Pr(x̄i(p̃) = x̄) =M(x̄, n, µ) (95)

The result then follows by substitution.

Proof for Proposition 2

1. For every i, let:

oi ≡ y(τi, {1, 1, . . . , 1}) (96)

pij ≡ y(τi, {τj , 1, 1, . . . , 1})− y(τi, {1, 1, 1, . . . , 1})
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where unobserved type 1 has been chosen as an arbitrary reference type. Then:

oi +
∑
j∈p

pij = y(τi, {1, 1, . . . , 1})

+
∑
j∈p

(y(τi, {τj , 1, 1, . . . , 1})− y(τi, {1, 1, 1, . . . , 1}))

(by (96))

= y(τi, {1, 1, . . . , 1})

+ y(τi,
{
τp(1), 1, 1, . . . , 1

}
)− y(τi, {1, 1, 1, . . . , 1})

...

+ y(τi,
{
τp(n−1), 1, 1, . . . , 1

}
)− y(τi, {1, 1, 1, . . . , 1})

(expansion of summation)

= y(τi, {1, 1, . . . , 1})

+ y(τi,
{
τp(1), τp(2), τp(3), . . . , τp(n−1)

}
)− y(τi,

{
1, , τp(2), τp(3), . . . , τp(n−1)

}
)

+ y(τi,
{
τp(2), τp(3), . . . , τp(n−1), 1

}
)− y(τi,

{
1, τp(3), . . . , τp(n−1), 1

}
)

...

+ y(τi,
{
τp(n−2), τp(n−1), 1, . . . , 1

}
)− y(τi,

{
1, τp(n−1), 1, . . . , 1

}
)

+ y(τi,
{
τp(n−1), 1, 1, . . . , 1

}
)− y(τi, {1, 1, 1, . . . , 1})

(by PSE)

= y(τi,
{
τp(1), τp(2), τp(3), . . . , τp(n−1)

}
)

= yi(p) (by (9))

which is result (28). To prove (29) and (30), first note that (τi, τj) ⊥⊥ τj′ by equation (4),

so:

(pij ,xj) ⊥⊥ xj′ (97)

Then:

CPEs,k = E (yi({j} ∪ q̃)− yi({j′} ∪ q̃)|xi = es,xj = ek,xj′ = e0) (by (12))

= E


oi + pij +

∑
j′′∈q̃

pij′′

−

oi + pij′ +
∑
j′′∈q̃

pij′′

∣∣∣∣∣∣
xi = es,

xj = ek,

xj′ = e0

 (by (28))

= E (pij − pij′ |xi = es,xj = ek,xj′ = e0)

= E (pij |xi = es,xj = ek,xj′ = e0)− E (pij′ |xi = es,xj = ek,xj′ = e0)

= E (pij |xi = es,xj = ek,xj′ = e0)− E (pij |xi = es,xj′ = ek,xj = e0)

= E (pij |xi = es,xj = ek)− E (pij |xi = es,xj = e0) (by (97))

36



which is the result in (29) and:

APEk = E (yi({j} ∪ q̃)− yi({j′} ∪ q̃)|xj = ek,xj′ = e0) (by (10))

= E

oi + pij +
∑
j′′∈q̃

pij′′

−

oi + pij′ +
∑
j′′∈q̃

pij′′

∣∣∣∣∣∣xj = ek,

xj′ = e0

 (by (28))

= E (pij − pij′ |xj = ek,xj′ = e0)

= E (pij |xj = ek,xj′ = e0)− E (pij′ |xj = ek,xj′ = e0)

= E (pij |xj = ek,xj′ = e0)− E (pij |xj′ = ek,xj = e0)

= E (pij |xj = ek)− E (pij |xj = e0) (by (97))

which is the result in (30).

2. Let pj ≡ p1j . Then for any i:

pij = (y(τi, {τj , 1, 1, . . . , 1})− y(τi, {1, 1, 1, . . . , 1})) (by (96))

= y(τ1, {τj , 1, 1, . . . , 1})− y(τ1, {1, 1, 1, . . . , 1}) (by OSE)

= p1j (by (96))

= pj (98)

Substituting the result in (98) into (28) yields the result in (31). Substituting that same

result into (29) and (30) yields:

APEk = E(pij |xj = ek)− E(pij |xj = e0) (by (30))

= E(pj |xj = ek)− E(pj |xj = e0) (by (98))

CPEs,k = E(pij |xi = es,xj = ek)− E(pij |xi = es,xj = e0) (by (29))

= E(pj |xi = es,xj = ek)− E(pj |xi = es,xj = e0) (by (98))

= E(pj |xj = ek)− E(pj |xj = e0) (since (4) =⇒ xi ⊥⊥ (xj , pj))

= APEk

which are the results in (32).

Proof for Proposition 3

The conditions for both parts of Proposition 4 are met here, so its results apply.

1. Let G̃ be a purely random group assignment and let p̃i = p(i, G̃). Part two of Proposition 4

applies to the joint distribution of (X,Y(G̃), X̄(X, G̃)) since Y(·) satisfies (PSE) and G̃

satisfies (RA). By (CRA), Lemma 1 applies to the joint distribution of (X,Y, X̄) Let (λ, η)
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be defined as in equation (103) of the proof for Proposition 4. Then:

E(yi|xi = x, x̄i = x̄) = E(yi(p̃i)|xi = x, x̄i(p̃i) = x̄) (by (43) in Lemma 1)

= (λ0 + η0(n− 1))

+ x(λ1 + η1(n− 1))

+ x̄η2(n− 1)

+ xη3(n− 1)x̄′

(by result (106) in the proof for Proposition 4)

Applying the law of iterated projections:

L(yi|xi, x̄i,x′
ix̄i) = L(E(yi|xi, x̄i)|xi, x̄i,x′

ix̄i) (law of iterated projections)

= L


(λ0 + η0(n− 1))

+ xi(λ1 + η1(n− 1))

+ x̄iη2(n− 1)

+ xiη3(n− 1)x̄′
i

∣∣∣∣∣∣∣∣∣∣∣
xi, x̄i,x

′
ix̄i

 (result above)

= (λ0 + η0(n− 1))

+ xi(λ1 + η1(n− 1))

+ x̄iη2(n− 1)

+ xiη3(n− 1)x̄′
i

(99)

L(yi|xi, x̄i,x′
ix̄i, zi) = L(E(yi|xi, x̄i)|xi, x̄i,x′

ix̄i, zi) (law of iterated projections)

= L


(λ0 + η0(n− 1))

+ xi(λ1 + η1(n− 1))

+ x̄iη2(n− 1)

+ xiη3(n− 1)x̄′
i

∣∣∣∣∣∣∣∣∣∣∣
xi, x̄i,x

′
ix̄i, zi

 (result above)

= (λ0 + η0(n− 1))

+ xi(λ1 + η1(n− 1))

+ x̄iη2(n− 1)

+ xiη3(n− 1)x̄′
i

(100)

= L(yi|xi, x̄i,x′
ix̄i) (by (99) and (100))

which is result (33).

2. The assumptions here (PSE, OSE, CRA) imply that all results in Propositions 2 and 5

apply. Therefore:

APEk = CPEs,k for all s (by (32) in Proposition 2)

=
β2k + β3sk
n− 1

(by (45) in Proposition 5)
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which can only be true if β3sk = 0 for all s, k.

Proof for Proposition 4

1. Let p̃ be a purely random draw of (n− 1) peers from N \ {i}. By (RA), the actual peer

group pi is also a purely random draw from this set, so its joint distribution with (yi(·),X)

is identical to the joint distribution of p̃ with (yi(·),X). Then:

CGEs,m = E(yi(p̃)|xi = es, zi(p̃) = em)− E(yi(p̃)|xi = es, zi(p̃) = e0) (by (18))

= E(yi(pi)|xi = es, zi(pi) = em)− E(yi(pi)|xi = es, zi(pi) = e0)

(RA =⇒ same joint distribution)

= E(yi|xi = es, zi = em)− E(yi|xi = es, zi = e0) (101)

Since xi and zi are categorical, E(yi|xi, zi) is trivially linear in (xi, zi,x
′
izi). Therefore:

E(yi|xi, zi) = L(yi|xi, zi,x′
izi)

= δ0 + xiδ1 + ziδ2 + xiδ3z
′
i (by (42))

Combining these two results produces:

CGEs,m = E(yi|xi = es, zi = em)− E(yi|xi = es, zi = e0) (by (101))

= (δ0 + esδ1 + emδ2 + esδ3e
′
m)− (δ0 + esδ1 + e0δ2 + esδ3e

′
0) (result above)

= (δ0 + esδ1 + emδ2 + esδ3e
′
m)− (δ0 + esδ1) (since e0 = 0)

= emδ2 + esδ3e
′
m

= δ2m + δ3sm

which is the result in (40). Result (39) can be established by similar reasoning:

AGEm = E(yi(p̃)|zi(p̃) = em)− E(yi(p̃)|zi(p̃) = e0) (by (17))

= E(yi(pi)|zi(pi) = em)− E(yi(pi)|zi(pi) = e0)

(RA =⇒ same joint distribution)

= E(yi|zi = em)− E(yi|zi = e0) (102)

Since zi is categorical, E(yi|zi) is trivially linear in zi. Therefore:

E(yi|zi) = L(yi|zi)

= L(L(yi|xi, zi)|zi) (law of iterated projections)

= L(γ0 + xiγ1 + ziγ2|zi) (by (41))

= γ0 + L(xi|zi)γ1 + ziγ2

= γ0 + E(xi)γ1 + ziγ2 (RA =⇒ xi ⊥⊥ zi)
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Combining these two results:

AGEm = E(yi|zi = em)− E(yi|zi = e0) (by (102))

= (γ0 + E(xi)γ1 + emγ2)− (γ0 + E(xi)γ1 + e0γ2) (result above)

= (γ0 + E(xi)γ1 + emγ2)− (γ0 + E(xi)γ1) (since e0 = 0)

= emγ2

= γ2m

which is result (39).

2. By (PSE), Proposition 2 applies. Let λ ≡ (λ0, λ1) and η ≡ (η1, η2, η3) satisfy:

E(oi|xi = es) = λ0 + esλ1 (103)

E(pij |xi = es,xj = ek) = η0 + esη1 + ekη2 + esη3e
′
k

The linear functional forms in (103) are without loss of generality since x is categorical.

The estimand CPEs,k can be expressed as a function of η:

CPEs,k = E(pij |xi = es,xj = ek)

− E(pij |xi = es,xj = e0)

(by (30) in Proposition 2)

= (η0 + esη1 + ekη2 + esη3e
′
k)

− (η0 + esη1 + e0η2 + esη3e
′
0)

(by (103))

= (η0 + esη1 + ekη2 + esη3e
′
k)− (η0 + esη1) (since e0 = 0)

= ekη2 + esη3e
′
k

= η2k + η3sk (104)

The next step is to show the relationship between the coefficients in (λ, η) and the coefficients
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in β:

E(yi|X,G) = E

oi + ∑
j∈pi

pij

∣∣∣∣∣∣X,G
 (by (28) in Proposition 2)

= E

oi + N∑
j=1

pijI (j ∈ pi)

∣∣∣∣∣∣X,G
 (where I (·) is the indicator function)

= E(oi|X,G) +

N∑
j=1

E(pij |X,G)I (j ∈ pi)

(since I (j ∈ pi) is a function of G)

= E(oi|X,G) +
∑
j∈pi

E(pij |X,G)

= E(oi|X) +
∑
j∈pi

E(pij |X) (since RA =⇒ (oi, pij ,X) ⊥⊥ (G,pi))

= E(oi|xi) +
∑
j∈pi

E(pij |xi,xj) (since (4) =⇒ (τi, τj) ⊥⊥ τj′)

= λ0 + xiλ1 +
∑
j∈pi

(η0 + xiη1 + xjη2 + xiη3x
′
j) (by (103))

= λ0 + xiλ1 + η0(n− 1) + xiη1(n− 1) + x̄iη2(n− 1) + xiη3(n− 1)x̄′
i

= (λ0 + η0(n− 1)) + xi(λ1 + η1(n− 1)) + x̄iη2(n− 1) + xiη3(n− 1)x̄′
i

(105)

Applying the law of iterated expectations to this result:

E(yi|xi = x, x̄i = x̄) = E(E(yi|X,G)|xi = x, x̄i = x̄) (law of iterated expectations)

= E

(
(λ0 + η0(n− 1)) + xi(λ1 + η1(n− 1))

+ x̄iη2(n− 1) + xiη3(n− 1)x̄′
i

∣∣∣∣∣xi = x, x̄i = x̄

)
(by (105))

= (λ0 + η0(n− 1)) + x(λ1 + η1(n− 1)) + x̄η2(n− 1) + xη3(n− 1)x̄′

(106)
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Applying the law of iterated projections to this result:

L(yi|xi, x̄i,xix̄′
i) = L(E(yi|xi, x̄i)|xi, x̄i,xix̄′

i) (law of iterated projections)

= L


(λ0 + η0(n− 1))

+ xi(λ1 + η1(n− 1))

+ x̄iη2(n− 1)

+ xiη3(n− 1)x̄′
i

∣∣∣∣∣∣∣∣∣∣∣
xi, x̄i,xix̄

′
i

 (by (106))

= (λ0 + η0(n− 1))︸ ︷︷ ︸
β0

+xi (λ1 + η1(n− 1))︸ ︷︷ ︸
β1

+x̄i η2(n− 1)︸ ︷︷ ︸
β2

+xi η3(n− 1)︸ ︷︷ ︸
β3

x̄′
i

(107)

So β2 = η2(n− 1), β3 = η3(n− 1) and:

CPEs,k = η2k + η3sk (by (104))

=
β2k + β3sk
n− 1

(by (107))

which is the result in (36). To get result (35), first note that:

E(pij |xj = x) = E(E(pij |xi,xj)|xj = x) (law of iterated expectations)

= E(η0 + xiη1 + xjη2 + xiη3x
′
j |xj = x) (by (103))

= η0 + E(xi|xj = x)η1 + xη2 + E(xi|xj = x)η3x
′ (conditioning rule)

= η0 + E(xi)η1 + xη2 + E(xi)η3x
′ (since (4) =⇒ xi ⊥⊥ xj)

= (η0 + E(xi)) η1 + x (η2 + η′3E(x′
i)) (108)

Equation (30) from Proposition 2 implies:

APEk = E(pij |xj = ek)− E(pij |xj = e0) (by (30) in Proposition 2)

= ((η0 + E(xi)η1) + ek (η2 + η′3E(x′
i)))

− ((η0 + E(xi)η1) + e0 (η2 + η′3E(x′
i)))

(by (108))

= ((η0 + E(xi)η1) + ek (η2 + η′3E(x′
i)))

− ((η0 + E(xi)η1))

(since e0 = 0)

= ek (η2 + η′3E(x′
i)) (109)

Assumption (RA) implies that xi ⊥⊥ x̄i, so:

L(yi|x̄i) = L(L(yi|xi, x̄i)|x̄i) (law of iterated projections)

= L(α0 + xiα1 + x̄iα2|x̄i) (definition of α)

= α0 + L(xi|x̄i)α1 + x̄iα2

= (α0 + E(xi)α1) + x̄iα2 (RA =⇒ xi ⊥⊥ x̄i)
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Having expressed L(yi|x̄i) in terms of the the coefficients in α, it can also be expressed in

terms of the coefficients in (λ, η):

L(yi|x̄i) = L(L(yi|xi, x̄i,x′
ix̄i)|x̄i) (law of iterated projections)

= L

(
(λ0 + η0(n− 1)) + xi(λ1 + η1(n− 1))

+ x̄iη2(n− 1) + xiη3(n− 1)x̄′
i

∣∣∣∣∣ x̄i
)

(by (107))

= (λ0 + η0(n− 1)) + L(xi|x̄i)(λ1 + η1(n− 1))

+ x̄iη2(n− 1) + L(xiη3(n− 1)x̄′
i|x̄i)

(property of linear projection)

= (λ0 + η0(n− 1)) + E(xi)(λ1 + η1(n− 1))

+ x̄iη2(n− 1) + E(xi)η3(n− 1)x̄′
i

(RA =⇒ xi ⊥⊥ x̄i)

= (λ0 + η0(n− 1) + E(xi)(λ1 + η1(n− 1)))︸ ︷︷ ︸
α0+E(xi)α1

+x̄i (η2(n− 1) + η′3E(x′
i)(n− 1))︸ ︷︷ ︸

α2

(110)

So α2 = (η2(n− 1) + η′3E(x′
i)(n− 1)) and:

APEk = ek (η2 + η′3E(x′
i)) (by (109))

= ek
α2

n− 1
(by (110))

=
α2k

n− 1

which is the result in (35).

Lemma 1

Choose any TA ∈ T N , GA ∈ GN and XA ∈ RNK , let (τi(TA),xi(XA)) represent row i in

(TA,XA), and let pi(GA) = p(i,GA). Assumption (CRA) implies that:

Pr(T = TA|G = GA,X = XA) = Pr(T = TA|X = XA) (by (CRA))

=
N∏
i=1

Pr(τi = τi(TA)|xi = xi(XA)) (by (4))

=

N∏
i=1

Pr(τi = τi(TA) ∩ xi = xi(XA))

Pr(xi = xi(XA))

=

N∏
i=1

I (xi(XA) = x(τi(TA)))
Pr(τi = τi(TA))

Pr(xi = xi(XA))
(111)
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Therefore:

E(yi|xi = x, x̄i = x̄) = E (yi(pi)|xi = x, x̄i(pi) = x̄) (by (5) and (9))

= E
(
y
(
τi, {τj}j∈pi

)∣∣∣xi = x, x̄i(pi) = x̄
)

=
∑

TA∈T N

∑
GA∈GN

 y
(
τi(TA), {τj(TA)}j∈pi(GA)

)
∗Pr(T = TA ∩G = GA|xi = x, x̄i(pi(GA)) = x̄)


Let χi(GA,x, x̄) ≡ {X : xi = x, x̄i(p(i,GA)) = x̄}. Then:

E(yi|xi = x, x̄i = x̄) =
∑

TA∈T N

∑
GA∈GN

 y
(
τi(TA), {τj(TA)}j∈pi(GA)

)
∗Pr(T = TA ∩G = GA|X ∈ χi(GA,x, x̄))


(equivalent events)

=
∑

TA∈T N

∑
GA∈GN


y
(
τi(TA), {τj(TA)}j∈pi(GA)

)
∗Pr(T = TA|X ∈ χi(GA,x, x̄))

∗Pr(G = GA|X ∈ χi(GA,x, x̄))

 (by (CRA))

=
∑

GA∈GN

Pr(G = GA|X ∈ χi(GA,x, x̄))

 ∑
TA∈T N

 y
(
τi(TA), {τj(TA)}j∈pi(GA)

)
∗Pr(T = TA|X ∈ χi(GA,x, x̄))


Let GB ≡ (1, 1, . . . , 1, 2, 2, . . . , 2, . . . , N). By the exchangeability/independence of the rows in

(T,X), GA can be replaced with GB in the second part of the expression above:

E(yi|xi = x, x̄i = x̄) =
∑

GA∈GN

Pr(G = GA|X ∈ χi(GA,x, x̄))

 ∑
TA∈T N

 y
(
τi(TA), {τj(TA)}j∈pi(GB)

)
∗Pr(T = TA|X ∈ χi(GB,x, x̄))



=
∑

TA∈T N

 y
(
τi(TA), {τj(TA)}j∈pi(GB)

)
∗Pr(T = TA|X ∈ χi(GB,x, x̄))


=1︷ ︸︸ ︷ ∑

GA∈GN

Pr(G = GA|X ∈ χi(GA,x, x̄))


=

∑
TA∈T N

y
(
τi(TA), {τj(TA)}j∈pi(GB)

)
Pr(T = TA|X ∈ χi(GB,x, x̄))

(112)

Since equation (112) applies for all G that satisfy (CRA) it also applies for purely random G.

Let p̃ be a purely random draw of (n− 1) peers from N \ {i}. Then

E(yi(p̃)|xi = x, x̄i = x̄(p̃)) =
∑

TA∈T N

y
(
τi(TA), {τj(TA)}j∈pi(GB)

)
Pr(T = TA|X ∈ χi(GB,x, x̄))

(by (112))

= E(yi|xi = x, x̄i = x̄) (also by (112))
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which is the result in (43).

Proof for Proposition 5

Let G̃ be a purely random group assignment and let p̃i = p(i, G̃). Since G̃ satisfies (RA) and

G satisfies (CRA), Lemma 1 applies:

E(yi|xi = x, x̄i = x̄) = E(yi(p̃i)|xi = x, x̄i(p̃i) = x̄) (by (43) in Lemma 1)

Then:

1. Let ˜δsat be the coefficients from estimating equation (42) with counterfactual data on

outcomes yi(p̃i) and peer group composition zsati (p̃i). Since zsati is saturated, the events

zsati = em and {x̄i} = Smx̄ are identical, implying that:

E(yi|xi = x, zsati = z) = E(yi(p̃i)|xi = x, zsati (p̃i) = z) for all x, z

which implies that:

δsat = ˜δsat (113)

Since G̃ satisfies (RA), part one of Proposition 4 applies to the counterfactiual yi(p̃i) and

zsati (p̃i). Therefore:

CGEsats,m = ˜δsat2m + ˜δsat3sm (by (40) in Proposition 4)

= δsat2m + δsat3sm (by (113))

Result (47) then follows from substitution of this result into result (25). Result (46) follows

from substitution of result (47) into result (23).

2. Let β̃ be the coefficients from estimating equation (38) from with counterfactual outcomes

yi(p̃i) and peer group composition x̄i(p̃i). Result (43) in Lemma 1 implies that:

β = β̃ (114)

Since peer effects satistfy (PSE) and G̃ satisfies (RA), part two of Proposition 4 applies to

the counterfactiual yi(p̃i) and x̄i(p̃i). Therefore:

CPEs,k =
β̃2k + β̃3sk
n− 1

(by (36) in Proposition 4)

=
β2k + β3sk
n− 1

(by (114))

which is result (45). Result (44) follows from substitution of result (45) into result (22).
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Proof for Proposition 6

1. Let p̃ be a purely random draw of (n− 1) peers from N \ {i}. By construction, both G0

and G1 satisfy (CRA) and Lemma 1 applies. Therefore:

E(yi0|xi = x, x̄i0 = x̄) = E(yi(p̃)|xi = x, x̄i(p̃) = x̄) (by (43) in Lemma 1)

= E(yi1|xi = x, x̄i1 = x̄) (115)

For any m > 0, Smx̄ is a singleton {x̄m} so the events x̄i1 = x̄m and zi1 = em are identical.

Therefore, for any m > 0:

E(yi1|xi = es, zi1 = em) = E(yi1|xi = es, x̄i1 = x̄m) (identical events)

= E(yi(p̃)|xi = es, x̄i(p̃) = x̄m) (by (115))

= E(yi(p̃)|xi = es, zi(p̃) = em) (identical events)

= CGEs,m + E(yi(p̃)|xi = es, zi(p̃) = e0) (116)

Averaging over all values of z:

E(yi1|xi = es) =

M∑
m=0

E(yi1|xi = es, zi1 = em) Pr(zi1 = em|xi = es)

=

M∑
m=1

E(yi1|xi = es, zi1 = em) Pr(zi1 = em|xi = es)

(since Pr(x̄i1 ∈ S0
x̄) = 0)

=

M∑
m=1

(CGEs,m + E(yi(p̃)|xi = es, zi(p̃) = e0)) Pr(zi1 = em|xi = es)

(by (116))

= E(yi(p̃)|xi = es, zi(p̃) = e0)


M∑
m=1

Pr(zi1 = em|xi = es)︸ ︷︷ ︸
1


+

M∑
m=1

CGEs,m Pr(zi1 = em|xi = es)

= E(yi(p̃)|xi = es, zi(p̃) = e0) +

M∑
m=1

CGEs,m Pr(zi1 = em|xi = es)

(117)
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This result applies to yi0 as well as to yi1, so:

CREs(G0,G1) = E(yi1 − yi0|xi = es)

= E(yi1|xi = es)− E(yi0|xi = es)

=

(
E(yi(p̃)|xi = es, zi(p̃) = e0) +

M∑
m=1

CGEs,m Pr(zi1 = em|xi = es)

)

−

(
E(yi(p̃)|xi = es, zi(p̃) = e0) +

M∑
m=1

CGEs,m Pr(zi0 = em|xi = es)

)
(by (117))

=

M∑
m=1

CGEs,m (Pr(zi1 = em|xi = es)− Pr(zi0 = em|xi = es))

= CGEsE(z′i1 − z′i0|xi = es)

which is the result in (49).

2. Given (PSE), part 1 of Proposition 2 applies:

E(yi1|X,G1) = E(yi(pi1)|X,G1) (definition)

= E

oi + ∑
j∈pi1

pij

∣∣∣∣∣∣X,G1

 (by Proposition 2)

= E (oi|X,G1) +
∑
j∈pi1

E (pij |X,G1)

= E (E(oi|X,G1, σ)|X,G1) +
∑
j∈pi1

E (E(pij |X,G1, σ)|X,G1)

(law of iterated expectations)

= E (E(oi|X, σ)|X,G1) +
∑
j∈pi1

E (E(pij |X, σ)|X,G1)

(since G1 is a function of (X, σ))

= E (E(oi|xi)|X,G1) +
∑
j∈pi1

E (E(pij |xi,xj)|X,G1)

= E(oi|xi) +
∑
j∈pi1

E(pij |xi,xj)

= λ0 + xiλ1 +
∑
j∈pi1

η0 + xiη1 + xjη2 + xiη3x
′
j

(where (λ, η) are defined as in (103))

= (λ0 + η0(n− 1)) + xi(λ1 + η1(n− 1)) + x̄i1η2(n− 1) + xiη3(n− 1)x̄′
i1

(118)
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Averaging over values of x̄:

E(yi1|xi = x) = E(E(yi1|X,G1)|xi = x) (Law of iterated expectations)

= E

(
(λ0 + η0(n− 1)) + xi(λ1 + η1(n− 1))

+ x̄i1η2(n− 1) + xiη3(n− 1)x̄′
i1

∣∣∣∣∣xi = x

)
(by (118))

= (λ0 + η0(n− 1)) + x(λ1 + η1(n− 1))

+ E(x̄i1|xi = x)η2(n− 1) + xη3(n− 1)E(x̄′
i1|xi = x)

(119)

This result also applies to G0, so:

CREs(G0,G1) = E(yi1 − yi0|xi = es)

=

(
(λ0 + η0(n− 1)) + es(λ1 + η1(n− 1))

+ E(x̄i1|xi = es)η2(n− 1) + esη3(n− 1)E(x̄′
i1|xi = es)

)

−

(
(λ0 + η0(n− 1)) + es(λ1 + η1(n− 1))

+ E(x̄i0|xi = es)η2(n− 1) + esη3(n− 1)E(x̄′
i0|xi = es)

)
(by (119))

= (η′2(n− 1) + esη3(n− 1)) (E(x̄′
i1|xi = es)− E(x̄′

i0|xi = es))

= CPEsE(x̄′
i1 − x̄′

i0|xi = es)(n− 1)

which is the result in (51).

3. Given (PSE, OSE), part two of Proposition 2 applies. By equation (32) in Proposition 2,

CPEs = APE and so the the result in (53) follows from (51) by substitution. The second

result follows from:

E(yi1 − yi0) =

K∑
s=0

E(yi1 − yi0|xi = es) Pr(xi = es) (law of total probability)

=

K∑
s=0

CREs(G0,G1) Pr(xi = es) (definition of CREs)

=

K∑
s=0

APEE(x̄′
i1 − x̄′

i0|xi = es)(n− 1)Pr(xi = es) (by result (53))

= APE(n− 1)

K∑
s=0

E(x̄′
i1 − x̄′

i0|xi = es) Pr(xi = es)

= APE(n− 1) E(x̄′
i1 − x̄′

i0)︸ ︷︷ ︸
0

= 0
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Proof for Proposition 7

Given (OSE,PSE), result 2 in Proposition 2 applies, and we can express each outcome yi as a

sum of own effects oi and peer effects pj . Let η ≡ (η0, η1) such that:

E(pi|xi) = η0 + xiη1 (120)

and let λℓ ≡ (λℓ0, λ
ℓ
1) and λ ≡ (λ0, λ1) such that:

E(oi|xi, ℓi = ℓ) = λℓ0 + xiλ
ℓ
1 (121)

E(oi|xi) = λ0 + xiλ1 (122)

By constant shifts (CS), λℓ1 does not vary across locations:

λℓ1k = E(oi|xi = ek, ℓi = ℓ)− E(oi = e0|xi, ℓi = ℓ)

= E(oi|xi = ek)− E(oi = e0|xi) (by CS)

= λ1k

implying that:

E(oi|xi, ℓi = ℓ) = λℓ0 + xiλ1 (123)

Substituting these results into equation (31):

E(yi|X,G,L) = E

oi + ∑
j∈pi

pj

∣∣∣∣∣∣X,G,L
 (by (31))

= E (oi |X,G,L ) +
∑
j∈pi

E (pj |X,G,L )

= E (oi |xi, ℓi ) +
∑
j∈pi

E (pj |xj , ℓj ) (by RAL)

= E (oi |xi, ℓi ) +
∑
j∈pi

E (pj |xj ) (by LI)

= λℓi0 + λ1xi +
∑
j∈pi

(η0 + xjη1) (by results above)

= (λℓi0 + η0(n− 1)) + λ1xi + x̄iη1(n− 1) (124)

Applying the law of iterated expectations:

E(yi|xi = x, x̄i = x̄, ℓi = ℓ) = E(E(yi|X,G,L)|xi = x, x̄i = x̄, ℓi = ℓ) (by LIE)

= (λℓ0 + η0(n− 1))︸ ︷︷ ︸
αℓ

0

+x λ1︸︷︷︸
α1

+x̄ η1(n− 1)︸ ︷︷ ︸
α2

(125)
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Finally, result 2 in Proposition 2 implies:

CPEsk = APEk = E(pi|xi = ek)− E(pi|xi = e0) (126)

= η1k (127)

= α2k/(n− 1) (128)

Proof for Proposition 8

1. The proof here is essentially the same as the proof for part two of Proposition 4, but

conditioning on ℓi. Given (PSE), Proposition 2 implies the potential outcome function can

be written as in equation (28) and within-location conditional average peer effects can be

written in terms of pij :

CPEℓs,k = E(pij |xi = es,xj = ek, ℓi = ℓj = ℓ)

− E(pij |xi = es,xj = e0, ℓi = ℓj = ℓ)

(129)

APEℓk = E(pij |xj = ek, ℓi = ℓj = ℓ)− E(pij |xj = e0, ℓi = ℓj = ℓ)

Without loss of generality, let λℓ ≡ (λℓ0, λ
ℓ
1) and η

ℓℓ′ ≡ (ηℓℓ
′

1 , ηℓℓ
′

2 , ηℓℓ
′

3 ) satisfy:

E(oi|xi, ℓi = ℓ) = λℓ0 + xiλ
ℓ
1 (130)

E(pij |xi,xj , ℓi = ℓ, ℓj = ℓ′) = ηℓℓ
′

0 + xiη
ℓℓ′

1 + xjη
ℓℓ′

2 + xiη
ℓℓ′

3 x′
j

These two results can be combined to find CPEℓ in terms of ηℓℓ:

CPEℓs,k = E(pij |xi = es,xj = ek, ℓi = ℓj = ℓ)

− E(pij |xi = es,xj = e0, ℓi = ℓj = ℓ)

(by (129))

=
(
ηℓℓ0 + esη

ℓℓ
1 + ekη

ℓℓ
2 + esη

ℓℓ
3 e′k

)
−
(
ηℓℓ0 + esη

ℓℓ
1 + e0η

ℓℓ
2 + esη

ℓℓ
3 e′0

) (by (130))

=
(
ηℓℓ0 + esη

ℓℓ
1 + ekη

ℓℓ
2 + esη

ℓℓ
3 e′k

)
−
(
ηℓℓ0 + esη

ℓℓ
1

)
(since e0 = 0)

= ekη
ℓℓ
2 + esη

ℓℓ
3 e′k

= ηℓℓ2k + ηℓℓ3sk (131)
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The next step is to find the relationship between ηℓℓ and βℓ by finding the best linear

predictor Lℓ(yi|xi, x̄i,x′
ix̄i) in terms of ηℓℓ:

E(yi|X,G,L) = E

oi + ∑
j∈pi

pij

∣∣∣∣∣∣X,G,L
 (by Proposition 2)

= E

oi + N∑
j=1

pijI (j ∈ pi)

∣∣∣∣∣∣X,G,L

(where I () is the indicator function)

= E(oi|X,G,L) +
N∑
j=1

E(pijI (j ∈ pi) |X,G,L)

= E(oi|X,G,L) +
N∑
j=1

E(pij |X,G,L)I (j ∈ pi)

(since I (j ∈ pi) is a function of G)

= E(oi|X,G,L) +
∑
j∈pi

E(pij |X,G,L)

= E(oi|X,L) +
∑
j∈pi

E(pij |X,L) (RAL =⇒ T ⊥⊥ G|L)

= E(oi|xi, ℓi) +
∑
j∈pi

E(pij |xi,xj , ℓi, ℓj = ℓi) (by (58))

= λℓi0 + xiλ
ℓi
1 +

∑
j∈pi

(
ηℓiℓi0 + xiη

ℓiℓi
1 + xjη

ℓiℓi
2 + xiη

ℓiℓi
3 x′

j

)
(by (130))

=
(
λℓi0 + ηℓiℓi0 (n− 1)

)
+ xi

(
λℓiℓi1 + ηℓiℓi1 (n− 1)

)
+ x̄iη

ℓiℓi
2 (n− 1) + xiη

ℓiℓi
3 (n− 1)x̄′

i

(132)

Applying the law of iterated projections:

Lℓ

(
yi

∣∣∣∣∣xi, x̄i,x′
ix̄i

)
= Lℓ (E (yi|X,G,L)|xi, x̄i,x′

ix̄i) (law of iterated projections)

= Lℓ


(λℓi0 + ηℓi0 (n− 1))

+ xi(λ
ℓiℓi
1 + ηℓiℓi1 (n− 1))

+ x̄iη
ℓiℓi
2 (n− 1)

+ xiη
ℓiℓi
3 (n− 1)x̄′

i

∣∣∣∣∣∣∣∣∣∣∣
xi, x̄i,x

′
ix̄i

 (by (132))

= (λℓ0 + ηℓℓ0 (n− 1))︸ ︷︷ ︸
βℓ
0

+xi (λ
ℓ
1 + ηℓℓ1 (n− 1))︸ ︷︷ ︸

βℓ
1

+ x̄i η
ℓℓ
2 (n− 1)︸ ︷︷ ︸

βℓ
2

+xi η
ℓℓ
3 (n− 1)︸ ︷︷ ︸

βℓ
3

x̄′
i

(133)
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So βℓ2 = ηℓℓ2 (n− 1), βℓ3 = ηℓℓ3 (n− 1), and:

CPEℓs,k = ηℓℓ2k + ηℓℓ3sk (by (131))

=
βℓ2k + βℓ3sk
n− 1

(by (133))

which is the result in (65). The same procedure can be used to derive the result in (66).

First, express APEℓ in terms of ηℓℓ:

APEℓk = E(pij |xj = ek, ℓi = ℓj = ℓ)− E(pij |xj = e0, ℓi = ℓj = ℓ) (by (129))

= E (E (pij |xi,xj , ℓi = ℓj = ℓ)|xj = ek, ℓi = ℓj = ℓ)

− E (E (pij |xi,xj , ℓi = ℓj = ℓ)|xj = e0, ℓi = ℓj = ℓ)

(law of iterated expectations)

= E
(
ηℓℓ0 + xiη

ℓℓ
1 + xjη

ℓℓ
2 + xiη

ℓℓ
3 x′

j

∣∣xj = ek, ℓi = ℓj = ℓ
)

− E
(
ηℓℓ0 + xiη

ℓℓ
1 + xjη

ℓℓ
2 + xiη

ℓℓ
3 x′

j

∣∣xj = e0, ℓi = ℓj = ℓ
) (by 130))

= ηℓℓ0 + E(xi|xj = ek, ℓi = ℓj = ℓ)ηℓℓ1

+ ekη
ℓℓ
2 + E(xi|xj = ek, ℓi = ℓj = ℓ)ηℓℓ3 e′k

−
(
ηℓℓ0 + E(xi|xj = e0, ℓi = ℓj = ℓ)ηℓℓ1

)
(since e0 = 0)

= ηℓℓ0 + E(xi|ℓi = ℓj = ℓ)ηℓℓ1

+ ekη
ℓℓ
2 + E(xi|ℓi = ℓj = ℓ)ηℓℓ3 e′k

−
(
ηℓℓ0 + E(xi|ℓi = ℓj = ℓ)ηℓℓ1

)
((58) =⇒ xi ⊥⊥ xj |L)

= ekη
ℓℓ
2 + E(xi|ℓi = ℓ)ηℓℓ3 e′k

= ek
(
ηℓℓ2 + (ηℓℓ3 )′E(x′

i|ℓi = ℓ)
)

(134)
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Then find the relationship between αℓ and ηℓℓ by expressing Lℓ(yi|x̄i) in terms of αℓ and

in terms of ηℓℓ:

Lℓ(yi|x̄i) = Lℓ
(
Lℓ (yi|xi, x̄i)

∣∣ x̄i) (law of iterated projections)

= Lℓ
(
αℓ0 + xiα

ℓ
1 + x̄iα

ℓ
2

∣∣ x̄i) (by (61))

= αℓ0 + Lℓ(xi|x̄i)αℓ1 + x̄iα
ℓ
2

= αℓ0 + E(xi|ℓi = ℓ)αℓ1 + x̄iα
ℓ
2 (by (58))

=
(
αℓ0 + E(xi|ℓi = ℓ)αℓ1

)
+ x̄iα

ℓ
2 (135)

Lℓ(yi|x̄i) = Lℓ (E (yi|X,G,L)| x̄i) (law of iterated projections)

= Lℓ


(λℓi0 + ηℓi0 (n− 1))

+ xi(λ
ℓiℓi
1 + ηℓiℓi1 (n− 1))

+ x̄iη
ℓiℓi
2 (n− 1)

+ xiη
ℓiℓi
3 (n− 1)x̄′

i

∣∣∣∣∣∣∣∣∣∣∣
x̄i

 (by (133))

= (λℓ0 + ηℓ0(n− 1)) + Lℓ(xi|x̄i)(λℓℓ1 + ηℓℓ1 (n− 1))

+ x̄iη
ℓℓ
2 (n− 1) + Lℓ(xi|x̄i)ηℓℓ3 (n− 1)x̄′

i

= (λℓ0 + ηℓ0(n− 1)) + E(xi|ℓi = ℓ)(λℓℓ1 + ηℓℓ1 (n− 1))

+ x̄iη
ℓℓ
2 (n− 1) + E(xi|ℓi = ℓ)ηℓℓ3 (n− 1)x̄′

i

(by (58))

= (λℓ0 + ηℓ0(n− 1)) + E(xi|ℓi = ℓ)(λℓℓ1 + ηℓℓ1 (n− 1))︸ ︷︷ ︸
αℓ

0+E(xi|ℓi=ℓ)αℓ
1

+ x̄i
(
ηℓℓ2 (n− 1) + (ηℓℓ3 )′E(x′

i|ℓi = ℓ)(n− 1)
)︸ ︷︷ ︸

αℓ
2

(136)

So αℓ2 = (ηℓℓ2 (n− 1) + (ηℓℓ3 )′E(x′
i|ℓi = ℓ)(n− 1)) and:

APEℓk = ek(η
ℓℓ
2 + (ηℓℓ3 )′E(x′

i|ℓi = ℓ)) (by (134))

= ek
αℓ2
n− 1

(by (135) and (136))

=
αℓ2k
n− 1

which is the result in (66).
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2. First note that:

CPEs,k = E(pij |xi = es,xj = ek)− E(pij |xi = es,xj = e0) (by Proposition 2)

= E(E(pij |xi,xj , ℓi, ℓj)|xi = es,xj = ek)

− E(E(pij |xi,xj , ℓi, ℓj)|xi = es,xj = e0)

(law of iterated expectations)

= E(η
ℓiℓj
0 + xiη

ℓiℓj
1 + xjη

ℓiℓj
2 + xiη

ℓiℓj
3 x′

j |xi = es,xj = ek)

− E(η
ℓiℓj
0 + xiη

ℓiℓj
1 + xjη

ℓiℓi
2 + xiη

ℓiℓj
3 x′

j |xi = es,xj = e0)

(by (130))

= E(η
ℓiℓj
0 + xiη

ℓiℓj
1 + xjη

ℓiℓj
2 + xiη

ℓiℓj
3 x′

j |xi = es,xj = ek)

− E(η
ℓiℓj
0 + xiη

ℓiℓj
1 |xi = es,xj = e0)

(137)

Without assumption (LI), CPE is not identified since ηℓiℓj is only identified when ℓi = ℓj .

However, (LI) implies that there exists a constant vector η = (η0, η1, η2, η3) such that:

ηℓℓ
′
= η for all ℓ, ℓ′ (138)

Applying (138) to (137) allows CPEs,k to be expressed in terms of η:

CPEs,k = E(η0 + xiη1 + xjη2 + xiη3x
′
j |xi = es,xj = ek)

− E(η0 + xiη1 + xjη2 + xiη3x
′
j |xi = es,xj = e0)

(by (138))

= (η0 + esη1 + ekη2 + esη3e
′
k)− (η0 + esη1 + e0η2 + esη3e

′
0)

= ekη2 + esη3e
′
k

= η2k + η3sk (139)

Applying (138) to (133) allows Lℓ(yi|xi, x̄i,x′
ix̄i) to be expressed in terms of η:

Lℓ(yi|xi, x̄i,x′
ix̄i) = (λℓ0 + η0(n− 1))︸ ︷︷ ︸

βℓ
0

+xi (λ
ℓ
1 + η1(n− 1))︸ ︷︷ ︸

βℓ
1

+x̄i η2(n− 1)︸ ︷︷ ︸
βℓ
2

+xi η3(n− 1)︸ ︷︷ ︸
βℓ
3

x̄′
i

(140)

which implies that:

CPEs,k = η2k + η3sk (by (139))

=
E(βℓi2k) + E(βℓi3sk)

n− 1
(by (140))

54



which is the result in (67).8 To prove the result in (68), first note that:

APEk = E(pij |xj = ek)− E(pij |xj = e0) (by Proposition 2)

= E(E(pij |xi,xj , ℓi, ℓj)|xj = ek)

−E(E(pij |xi,xj , ℓi, ℓj)|xj = e0)

(law of iterated expectations)

= E(η
ℓiℓj
0 + xiη

ℓiℓj
1 + xjη

ℓiℓj
2 + xiη

ℓiℓj
3 x′

j |xj = ek)

− E(η
ℓiℓj
0 + xiη

ℓiℓj
1 + xjη

ℓiℓi
2 + xiη

ℓiℓj
3 x′

j |xj = e0)

(by (130))

= E(η
ℓiℓj
0 + xiη

ℓiℓj
1 + xjη

ℓiℓj
2 + xiη

ℓiℓj
3 x′

j |xj = ek)

− E(η
ℓiℓj
0 + xiη

ℓiℓj
1 |xj = e0)

(141)

Applying (138) to (141) allows APEk to be expressed in terms of η:

APEk = E(η0 + xiη1 + xjη2 + xiη3x
′
j |xj = ek)

− E(η0 + xiη1 + xjη2 + xiη3x
′
j |xj = e0)

(by (138))

= (η0 + E(xi|xj = ek)η1 + ekη2 + E(xi|xj = ek)η3e
′
k)

− (η0 + E(xi|xj = e0)η1 + e0η2 + E(xi|xj = e0)η3e
′
0)

= (η0 + E(xi)η1 + ekη2 + E(xi)η3e
′
k)

− (η0 + E(xi)η1 + e0η2 + E(xi)η3e
′
0)

(since xi ⊥⊥ xj)

= ekη2 + E(xi)η3e
′
k (since e0 = 0)

= ek(η2 + η′3E(x′
i)) (142)

Applying (138) to (136) allows Lℓ(yi|x̄i) to be expressed in terms of η:

Lℓ(yi|x̄i) = (λℓ0 + η0(n− 1)) + E(xi|ℓi = ℓ)(λℓℓ1 + η1(n− 1))︸ ︷︷ ︸
αℓ

0+E(xi|ℓi=ℓ)αℓ
1

+ x̄i (η2(n− 1) + η′3E(x′
i|ℓi = ℓ)(n− 1))︸ ︷︷ ︸

αℓ
2

(143)

which implies that:

E(αℓi2 ) = E (η2(n− 1) + η′3E(x′
i|ℓi)(n− 1)) (by (143))

= (η2 + η′3E(E(x′
i|ℓi))) (n− 1)

= (η2 + η′3E(x′
i)) (n− 1) (144)

8Note that βℓ
2, β

ℓ
3, and αℓ

2 do not vary by ℓ, so it is not strictly necessary to average across locations in (67) and
(68) rather than simply choosing an arbitrary location. In a finite sample, an average of noisy estimators would
typically outperform any one of those estimators.
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and therefore:

APEk = ek(η2 + η′3E(x′
i)) (by (142))

=
ekE(αℓi2 )

n− 1
(by (144))

=
E(αℓi2k)

n− 1

which is the result in (68).

3. Assumption (OSE) implies that:

E(pij |xi,xj , ℓi = ℓ, ℓj = ℓ′) = E(pj |xi,xj , ℓi = ℓ, ℓj = ℓ′) (by OSE)

= E(pj |xj , ℓj = ℓ′) (by (58))

=⇒ (ηℓℓ
′

0 , ηℓℓ
′

1 , ηℓℓ
′

2 , ηℓℓ
′

3 ) = (ηℓ
′

0 , 0, η
ℓ′

2 , 0) (145)

Applying (145) to (136) produces:

Lℓ(yi|x̄i) = (λℓ0 + ηℓ0(n− 1)) + E(xi|ℓi = ℓ)λℓ1︸ ︷︷ ︸
αℓ

0+E(xi|ℓi=ℓ)αℓ
1

+x̄i η
ℓ
2(n− 1)︸ ︷︷ ︸

αℓ
2

(146)

Applying (145) to (141) produces:

APEk = E(η
ℓiℓj
0 + xiη

ℓiℓj
1 + xjη

ℓiℓj
2 + xiη

ℓiℓj
3 x′

j |xj = ek)

− E(η
ℓiℓj
0 + xiη

ℓiℓj
1 |xj = e0)

(by (141))

= E(η
ℓj
0 + xjη

ℓj
2 |xj = ek)

− E(η
ℓj
0 |xj = e0)

(by (145))

= E(η
ℓj
0 |xj = ek)− E(η

ℓj
0 |xj = e0) + ekE(η

ℓj
2 |xj = ek) (147)

The third term in this expression is identified, but the first two terms are not, because ηℓ0
cannot be distinguished from λℓ0. However, assumption (PLI) implies that ηℓ

′

0 = η0, so:

APEk = E(η0|xj = ek)− E(η0|xj = e0) + ekE(η
ℓj
2 |xj = ek) (by PLI)

= η0 − η0 + ekE(η
ℓj
2 |xj = ek)

= ekE(η
ℓj
2 |xj = ek)

= ekE(ηℓi2 |xi = ek) (by exchangeability)

=
ekE(αℓi2 |xi = ek)

n− 1
(by (146))

=
E(αℓi2k|xi = ek)

n− 1

which is the result in (69).
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Proof for Proposition 9

1. Let q be an arbitrary group of (n − 2) peers, and let q0 be a group of (n − 2) peers for

whom x∗ = 0. Then (DCE) implies:

yi(j ∪ q)− yi(j
′ ∪ q) =

(
h(x∗

i ,
{
x∗
j

}
∪ {x∗

k}k∈q) + ϵi

)
−
(
h(x∗

i ,
{
x∗
j′
}
∪ {x∗

k}k∈q) + ϵi

)
= h(x∗

i ,
{
x∗
j

}
∪ {x∗

k}k∈q)− h(x∗
i ,
{
x∗
j′
}
∪ {x∗

k}k∈q) (148)

and (PSE) implies:

yi(j ∪ q)− yi(j
′ ∪ q) = yi(j ∪ q0)− yi(j

′ ∪ q0) (by (PSE))

= h(x∗
i ,
{
x∗
j

}
∪ {x∗

k}k∈q0
)− h(x∗

i ,
{
x∗
j′
}
∪ {x∗

k}k∈q0
) (by (148))

= h(x∗
i ,
{
x∗
j

}
∪ {0, 0, . . . , 0})− h(x∗

i ,
{
x∗
j′
}
∪ {0, 0, . . . , 0}) (149)

Let:

h1(x
∗
i ) ≡ h (x∗

i , {0, . . . , 0}) (150)

h2(x
∗
i ,x

∗
j ) ≡ h

(
x∗
i ,
{
x∗
j , . . . , 0

})
− h (x∗

i , {0, . . . , 0})

Then:

yi(p) = h
(
x∗
i ,
{
x∗
p(1), . . . ,x

∗
p((n−1))

})
+ ϵi (by DCE)

=



h (x∗
i , {0, . . . , 0})

+h
(
x∗
i ,
{
x∗
p(1), 0, . . . , 0

})
− h (x∗

i , {0, . . . , 0})

+h
(
x∗
i ,
{
x∗
p(1),x

∗
p(2), 0, . . . , 0

})
− h

(
x∗
i ,
{
x∗
p(1), 0, . . . , 0

})
+

...

+h
(
x∗
i ,
{
x∗
p(1), . . . ,x

∗
p((n−1))

})
− h

(
x∗
i ,
{
x∗
p(1), . . . ,x

∗
p((n−1)−1), 0

})


+ ϵi

=



h (x∗
i , {0, . . . , 0})

+h
(
x∗
i ,
{
x∗
p(1), 0, . . . , 0

})
− h (x∗

i , {0, . . . , 0})

+h
(
x∗
i ,
{
x∗
p(2), 0, . . . , 0

})
− h (x∗

i , {0, . . . , 0})

+
...

+h
(
x∗
i ,
{
x∗
p((n−1)), 0, . . . , 0

})
− h (x∗

i , {0, . . . , 0})


+ ϵi (by (148) and (149))

= h (x∗
i , {0, . . . , 0}) +

∑
j∈p

h
(
x∗
i ,
{
x∗
j , 0, . . . , 0

})
− h (x∗

i , {0, . . . , 0}) + ϵi

= h1(x
∗
i ) +

∑
j∈p

h2(x
∗
i ,x

∗
j ) + ϵi
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which is the first result in equation (70). If x∗ is categorical, then these functions can be

written in the form:

h1(x
∗
i ) = ψ0 + x∗

iψ1 (151)

h2(x
∗
i ,x

∗
j ) = ϕ0 + x∗

iϕ1 + x∗
jϕ2 + x∗

iϕ3(x
∗
j )

′

Note that h2(x
∗
i , 0) = 0 which implies ϕ0 = ϕ1 = 0 and:

yi(p) = h1(x
∗
i ) +

∑
j∈p

h2(x
∗
i ,x

∗
j ) + ϵi (by (70))

= ψ0 + x∗
iψ1 +

∑
j∈p

(
x∗
jϕ2 + x∗

iϕ3(x
∗
j )

′)+ ϵi (by (151))

= ψ0 + x∗
iψ1 +

∑
j∈p

x∗
j

ϕ2 + x∗
iϕ3

∑
j∈p

x∗
j

′

+ ϵi

= ψ0 + x∗
iψ1 + x̄∗

i (p)ϕ2(n− 1)︸ ︷︷ ︸
ψ2

+x∗
i ϕ3(n− 1)︸ ︷︷ ︸

ψ2

x̄∗
i (p)

′ + ϵi

which is the last result in equation (70).

2. First note that:

yi(p)− yi(p
′) =

h1(x∗
i ) +

∑
j∈p

h2(x
∗
i ,x

∗
j ) + ϵi

−

h1(x∗
i ) +

∑
j∈p′

h2(x
∗
i ,x

∗
j ) + ϵi


(by (70))

=

∑
j∈p

h2(x
∗
i ,x

∗
j )

−

∑
j∈p′

h2(x
∗
i ,x

∗
j )

 (152)

Choose any individual i′ such that x∗
i′ = 0, and let h3(x

∗
j ) ≡ h2(0,x

∗
j ). Then:

yi(p)− yi(p
′) = yi′(p)− yi′(p) (by (OSE))

=

∑
j∈p

h2(0,x
∗
j )

−

∑
j∈p′

h2(0,x
∗
j )

 (by (152))

=

∑
j∈p

h3(x
∗
j )

−

∑
j∈p′

h3(x
∗
j )


The results in equation (71) follow by substitution into the results in equation (70) .

Proof for Proposition 10

1. Since x,x1, . . . ,xn−1 are categorical, x̄ fully describes
{
x1, . . . ,xn−1

}
and:

E
(
h(xi, {xj}j∈p)

∣∣∣xi = x, x̄i(p) = x̄
)
= h(x,

{
x1, . . . ,xn−1

}
) (153)
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for all p. Let p̃ be a purely random draw of (n− 1) peers from N \ {i}. Then:

(x∗
i , ϵi) ⊥⊥

{
x∗
j

}
j∈p̃

(154)

which implies:

E(ϵi|xi = x, x̄i(p̃) = x̄) = E(ϵi|xi = x) (by (154))

= 0 (155)

By (CRA), Lemma 1 holds and therefore:

E(yi|xi = x, x̄i = x̄) = E(yi(p̃)|xi = x, x̄i(p̃) = x̄) (by (43) in Lemma 1)

= E
(
h
(
x∗
i ,
{
x∗
j

}
j∈p̃

)
+ ϵi

∣∣∣xi = x, x̄i(p̃) = x̄
)

(by DCE)

= E
(
h
(
xi, {xj}j∈p̃

)
+ ϵi

∣∣∣xi = x, x̄i(p̃) = x̄
)

(by NOV)

= E
(
h
(
xi, {xj}j∈p̃

)∣∣∣xi = x, x̄i(p̃) = x̄
)

+ E (ϵi|xi = x, x̄i(p̃) = x̄)

= E
(
h
(
xi, {xj}j∈p̃

)∣∣∣xi = x, x̄i(p̃) = x̄
)

(by (155))

= h
(
x,
{
x1, . . . ,xn−1

})
(by (153))

Since the left side of this equation is identified for all (x, x̄) on the support of (xi, x̄i), so is

the right side.

2. (PSE,DCE) implies that the first result in Proposition 9 applies:

pij = h2(x
∗
i ,x

∗
j ) (by Proposition 9)

= h2(xi,xj) (by (NOV))

It follows by substitution that:

E(pij |xi = es,xj = ek) = E(h2(xi,xj)|xi = es,xj = ek) (result above)

= h2(es, ek) (conditioning rule)

E

(
pij

∣∣∣∣∣xi = es,xj = ek,

ℓi = ℓ, ℓj = ℓ′

)
= E

(
h2(xi,xj)

∣∣∣∣∣xi = es,xj = ek,

ℓi = ℓ, ℓj = ℓ′

)
(result above)

= h2(es, ek) (conditioning rule)

= E(pij |xi = es,xj = ek) (156)

which is condition (LI). Therefore the second result in Proposition 8 applies.
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Proof for Equation (25)

CGEs,m = E(yi(p̃)|xi = es, zi(p̃) = em)− E(yi(p̃)|xi = es, zi(p̃) = e0) (by (18))

=

Msat∑
r=0

E(yi(p̃)|xi = es, z
sat
i (p̃) = er) Pr(z

sat
i (p̃) = er|xi = es, zi(p̃) = em)

−
Msat∑
r=0

E(yi(p̃)|xi = es, z
sat
i (p̃) = er) Pr(z

sat
i (p̃) = er|xi = es, zi(p̃) = e0)

(law of total probability)

=

Msat∑
r=0

E(yi(p̃)|xi = es, z
sat
i (p̃) = er)

(
Pr(zsati (p̃) = er|zi(p̃) = em)

− Pr(zsati (p̃) = er|zi(p̃) = e0)

)
.

(independence of xi and (zsati (p̃), zi(p̃)))

=
Msat∑
r=0

E(yi(p̃)|xi = es, z
sat
i (p̃) = er)

(
Pr(zsati (p̃) = er|zi(p̃) = em)

− Pr(zsati (p̃) = er|zi(p̃) = e0)

)

−
Msat∑
r=0

E(yi(p̃)|xi = es, z
sat
i (p̃) = e0)

(
Pr(zsati (p̃) = er|zi(p̃) = em)

− Pr(zsati (p̃) = er|zi(p̃) = e0)

)

+

Msat∑
r=0

E(yi(p̃)|xi = es, z
sat
i (p̃) = e0)

(
Pr(zsati (p̃) = er|zi(p̃) = em)

− Pr(zsati (p̃) = er|zi(p̃) = e0)

)

=

Msat∑
r=0

= 0 for r = 0, CGEs,r for r > 0︷ ︸︸ ︷(
E(yi(p̃)|xi = es, z

sat
i (p̃) = er)

− E(yi(p̃)|xi = es, z
sat
i (p̃) = e0)

)(
Pr(zsati (p̃) = er|zi(p̃) = em)

− Pr(zsati (p̃) = er|zi(p̃) = e0)

)

+ E(yi(p̃)|xi = es, z
sat
i (p̃) = e0)


Msat∑
r=0

Pr(zsati (p̃) = er|zi(p̃) = em)

−
Msat∑
r=0

Pr(zsati (p̃) = er|zi(p̃) = e0)


︸ ︷︷ ︸

=(1=1)=0

=

Msat∑
r=1

CGEsats,r

(
Pr(zsati (p̃) = er|zi(p̃) = em)

− Pr(zsati (p̃) = er|zi(p̃) = e0)

)
(see (25))
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