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Abstract

Social interaction effects are often estimated under the strong assumption that

an individual’s choices depend directly on the observed characteristics of their peer

group. This paper considers a less restrictive potential outcomes framework in which

interaction with a given peer or peer group is considered a treatment with an unknown

and variable treatment effect. In this framework, conventional peer effect regressions

can be interpreted as characterizing treatment effect heterogeneity. This framework

is then used to clarify identification and interpretation of commonly-used peer effect

models and to suggest avenues for improving conventional empirical practice.
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1 Introduction

Empirical researchers often aim to measure the impact of peers or some other reference

group on a person’s choices or outcomes. Much of this research is based on a behavioral

model, generally associated with1 Manski (1993), in which an individual’s outcome

responds directly to the observed outcomes (endogenous effects) and characteristics

(contextual effects) of peers. Manski’s formulation has inspired an extensive literature

developing methods for modeling endogenous effects and for empirically distinguishing

them from both contextual effects and endogenous peer selection.

*Email: bkrauth@sfu.ca. Revisions available at bvkrauth.github.io/publication/peertreat
1In Manski (1993), behavior responds to the conditional expectation of peer behavior and characteristics,

but in most subsequent empirical work it is taken to respond to their observed values. Blume et al. (2011, p.
891-892) discuss this distinction and some of its implications.
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The modeling of contextual effects has seen less formal attention despite their

prevalence in empirical research. Economic theory often provides little guidance on

which peer characteristics to include in an empirical model, so some researchers include

whatever potentially relevant peer variables are available while other researchers include

only a single variable of interest. The results of these varying ad hoc specifications are

often difficult to interpret or compare across studies (Fruehwirth, 2014) in the absence

of a unifying framework or model selection criterion. Many of these difficulties are

a byproduct of interpreting contextual effects as direct and constant : in the absence

of an endogenous effect, any two peer groups with the same observed characteristics

are assumed to have exactly the same effect on a given individual’s outcome. This

interpretation imposes strong data requirements and identifying assumptions in order

to estimate the model and make relevant counterfactual predictions. More specifically,

the estimated model must include all potentially relevant peer characteristics, and

counterfactual outcomes depend on all of those characteristics. These requirements are

unlikely to be met in most applications, and may lead to substantial omitted variables

bias.

This paper describes a natural alternative formulation in which each person has

an unobserved and individual-specific influence on peer outcomes. This influence is

analogous to a standard treatment effect, but each person represents a distinct treatment

whose effect on peers may vary across treated individuals and with the other group

members. A person’s effect on peers may be correlated with observed background

characteristics, but need not be an exact function of these characteristics as in the

traditional model. Instead, estimated contextual effects can be understood as describing

treatment effect heterogeneity along researcher-selected dimensions. The framework

can be used to define causal peer effects in terms of explicit counterfactuals, to state

conditions under which they are identified, and to provide simple estimators.

The implications of this model support and clarify many common empirical practices.

The peer effects defined in this paper can usually be estimated by linear regressions

similar to those regularly used in empirical research. Simple linear models provide

useful information, and researchers can use different model specifications to explore

different dimensions of peer effect heterogeneity without needing to take a stand on

the “true” model. Peer effects can be identified using simple random assignment of

peers, random assignment based on observable characteristics, or (with some important

limitations) random cohorts or subgroups within endogenously-selected larger groups.

At the same time, the model implies clear recommendations and constraints for

future empirical work. First, parsimonious specifications with a few binary or categorical

explanatory variables are more robustly informative than the ad hoc specifications with
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many variables that often appear in empirical research. Second, the precise source of

identifying randomness in peer group formation has subtle but important implications

for the set of counterfactuals that can be credibly assessed. For example, the random

cohort research design commonly used to measure classroom peer effects only identifies

the impact of counterfactual student allocations within the school, and say little about

cross-school reallocations unless the researcher is willing to impose strong assumptions.

1.1 Related literature

The contemporary economics literature on measuring social effects has been primarily

aimed at addressing the challenges described by Manski (1993): distinguishing true

social effects from spurious social effects due to non-random peer selection or unobserved

common shocks, and distinguishing endogenous social effects from contextual social

effects. Subsequent empirical research has addressed the first of these issues by exploiting

natural experiments in which peer group assignment is affected by purely random factors,

while methodological research has addressed the second issue by exploiting nonlinearity

(Brock and Durlauf, 2000), exclusion restrictions (Gaviria and Raphael, 2001), or social

network structure (Graham, 2008; Bramoullé et al., 2009). When endogenous and

contextual effects cannot be separately identified, a common solution is to specify a

model with only contextual effects and interpret it as the reduced form of a more general

structural model that may include endogenous effects.

The empirical literature on social effects is vast, and much of it emphasizes contextual

effects. For example, the classroom peer effects literature includes hundreds of papers

on how student outcomes (typically but not always test scores) are affected by classmate

ability, effort, gender, race, ethncity, personality, mental health, disruptive behavior,

special needs, native language, etc. Other papers (Arcidiacono et al., 2012; Isphording

and Zölitz, 2020) measure the effect of a more general concept of unobserved peer

“quality” as inferred from individual fixed effects. While a detailed survey of findings

on classroom peer effects is beyond the scope of the current paper, several general

conclusions can be drawn: peer characteristics often matter, and they can matter in

ways that are not fully described by a simple one-dimensional peer quality measure.

For example, several papers find that students with learning disabilities (which have a

negative effect on own achievement) have a positive effect on peer achievement, and

boys are regularly found to reduce peer achievement even in subjects where boys’ own

achievement is similar to that of girls. In addition, using regression results to predict

the outcome of a proposed reallocation of students is complicated by the fact that the

various dimensions along which peers seem to matter are clearly related: language and
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ethnicity are nearly inseparable, as are gender and behavior. Changing one contextual

factor through classroom assignments will tend to change other related factors, making

it difficult to reach clear policy conclusions on the consequences of alternative peer

group assignment mechanisms.

Much of this empirical work follows Manski (1993) in treating the contextual effect

as a direct and constant function of peer characteristics. As in the current paper, more

recent methodological research has used a treatment effects framework to relax these

assumptions and clarify the counterfactual policies that can be assessed under a given

set of model assumptions. Manski (2013) and Li et al. (2019) relax the assumption

that peer effects are constant across treated individuals while retaining the assumption

that they depend directly on the observed peer characteristics. In Manski (2013)

and the subsequent literature on treatment effects with spillovers, the relevant peer

characteristics are directly manipulable individual-level treatments that have variable

effects on both own and peer outcomes. Peer groups are fixed, peer effects are identified

through random assignment to treatment, and the policy of interest is a counterfactual

assignment of treatments. In Li et al. (2019), the relevant peer characteristics are

non-manipulable background characteristics, and each person’s observed characteristics

have a direct effect on peer outcomes that varies across the treated individuals but

not across peers with a given set of observed characteristics. Peer effects are identified

through random assignment of individuals to peer groups, and the policy of interest is

a counterfactual assignment of peer groups.

Graham et al. (2010) is similar to this paper in allowing peer effects to be both

variable and indirect. That is, the effect of one person on another may depend on

unobserved characteristics of both indviduals. In their model, observed peer charac-

teristics do not directly affect the outcome but are imperfect proxies for unobserved

peer characteristics that do. Their policy of interest is a counterfactual peer group

assignment, as in Li et al. (2019) and this paper. The analysis and results in this paper

are complementary to those in Graham et al. (2010), but differ in several important

ways:

1. Graham et al. (2010) consider a single binary individual characteristic (e.g., race),

while this paper considers a richer (categorical) characteristics space.

2. Graham et al. (2010) assume peer groups are large enough that peer group

composition can be treated as a continuous variable. As a result:

(a) Estimation is based on nonparametric kernel regressions, their derivatives

and various integrals/averages of those derivatives.

(b) As Graham et al. (2010) note, this assumption implies that “our estimands
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and estimators are not appropriate for situations where groups are small (e.g.,

college roommates).”

In contrast, this paper assumes peer groups are small (finite) so that peer group

composition is a discrete variable. This property facilitates the use of linear

models, and fits many applications - classrooms, roommates, close friends, etc. -

better than the “large groups” assumption.

3. Graham et al. (2010) model the observed characteristics as independent of un-

observed heterogeneity, while this paper models the observed characteristics as

a function of unobserved heterogeneity. The two formulations are substantively

equivalent (each model can be mapped to the other by redefining variables), but

the formulation used here helps to separate practical issues of specification choice

from core assumptions about causal mechanisms.

A more general difference is this paper’s emphasis on explaining, clarifying and improving

upon current empirical practice.

Finally, this paper is among several that use estimated peer effect models to to

predict the consequences of counterfactual allocations of individuals to peer groups.

Bhattacharya (2009) develops algorithms to find optimal assignments from a given set

of model estimates. Graham et al. (2010) note that the large changes needed to reach

an optimal group assignment are typically infeasible and emphasize tools for predicting

the marginal effect of smaller and more feasible reallocations. Carrell et al. (2013)

report the results of a field experiment that uses peer effect estimates from one cohort

of students to construct presumably optimal allocations for a later cohort. Notably,

this allocation yielded surprisingly poor results, providing a cautionary tale on the risks

of optimizing from a potentially misspecified model.

2 Model

This section develops the basic model. The model’s exposition will refer to a running

example application on the effect of classroom gender2 composition on academic achieve-

ment as measured by test scores. This question has been investigated extensively in

the empirical literature, for example by Hoxby (2000), Lavy and Schlosser (2011) and

Eisenkopf et al. (2015). This research typically finds a substantial positive effect of

female classmates, even in settings where boys and girls have similar average outcomes.

2Following previous research and most available data sources, gender is treated as binary throughout the
example.
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It is thus a natural application of this model, which does not assume that peers can be

ordered in a single quality dimension.

2.1 Basic framework and notation

The model features a population of heterogeneous individuals arbitrarily indexed by

i ∈ I ≡ {1, 2, . . . , I}. Each individual is fully characterized by an unobserved type

τi ∈ T ≡ {1, 2, . . . , T} and membership in some social group gi ∈ G ≡ {1, 2, . . . , G}.
The population as a whole is fully characterized by the random vectors T ∈ T I and

G ∈ GI , in the sense that all random variables in the model can be expressed as

functions of (T,G).

An individual’s unobserved type represents everything about the individual that is

potentially relevant in this domain. The type space is finite to allow the use of elementary

probability theory, but it can be large so that individuals are unique or nearly unique.

The ordering of the type space is arbitrary; nearby types are not necessarily more

similar, and types cannot necessarily be ordered on some some simple“quality” index.

Group membership is determined by some group selection mechanism that can

be described by a discrete conditional PDF of the form:

fG|T(GA,TA) ≡ Pr(G = GA|T = TA) (1)

for any fixed vector of group assignments GA ∈ GI and types TA ∈ T I .

Each individual experiences a scalar outcome of interest yi ∈ R that depends on

both the individual’s own type and that of other group members:

Y ≡


y1
...

yI

 ≡


y1 (T,G)

...

yI (T,G)

 ≡ Y(T,G) (2)

The model does not include a direct causal effect of peer outcomes (“endogenous effects”

in the language of Manski 1993) but it can be interpreted as the reduced form of such

a model.

For each individual i, the researcher can observe the peer group gi, the outcome yi

and a vector of observed background characteristics xi ∈ RK . These characteristics
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are predetermined3 and depend only on one’s own type:

X ≡


x1

...

xI

 ≡


x(τ1)
...

x(τI)

 ≡ X(T) (3)

Where convenient, element k in the vector xi is represented by xik.

Note that the characteristics do not directly affect the outcome, though there will

typically be a relationship between characteristics and outcomes via their shared depen-

dence on the unobserved type. This is a key feature of this model: the characteristics in

xi are not assumed to be part of some “true” causal model, but rather have been chosen

by the researcher based on data availability and researcher interest. Another researcher

might choose different characteristics, and both choices could lead to interesting and

valid causal findings.

Given observed characteristics X and peer group assignments G, peer average

characteristics for individual i can be defined as:

x̄i ≡ x̄i(X,G) ≡ 1

ngi − 1

∑
j ̸=i:gj=gi

xj (4)

where ng is the number of members of group g. Where convenient, element k of the

vector x̄i is represented by the scalar x̄ik ≡ x̄ik(X,G).

Example 1 (Classmate gender effects). A researcher has data on I students allocated

across G classrooms and aims to measure the effect of classmate gender on test scores.

In this setting, the observed variables would be:

yi ≡ student i’s test score

gi ≡ classroom ID for student i

xi ≡ selected characteristics of student i, including gender

x̄i ≡ average characteristics of student i’s classmates

The unobserved type τi would represent everything in xi along with student i’s ability,

past academic and nonacademic experiences, personality, family and neighborhood

context, mental and physical health, special needs, and any other potentially relevant

indvidual-level factors.

3That is, they are not treatments that can be manipulated by a policy maker, as in Manski (2013) and
the subsequent literature on treatment effects with spillovers.
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2.2 Maintained assumptions

This section states some basic assumptions that will be maintained throughout the

analysis.

Assumption 1 (Independent types). Each individual’s type is an independent draw

from a common type distribution:

Pr(T = TA) =
I∏

i=1

fτ (τi(TA)) (5)

where fτ : T → [0, 1] is some unknown discrete PDF.

Assumption 1 is mosty innocuous: the indexing of individuals is arbitrary, so

unconditional independence is supported by standard exchangeability arguments. This

unconditional independence does not imply conditional independence of types given

information on X or G.

Assumption 2 (Constant group size). Each peer group in G has exactly n members.

That is, Pr(G ∈ GI
n) = 1 where:

GI
n ≡

{
(g1, . . . , gI) ∈ GI :

I∑
i=1

I (gi = g) = n, ∀g ∈ {1, . . . , G}

}
(6)

is the set of all peer group allocations that have exactly n members per group, and

n = I/G is an integer.

Assumption 2 is a standard assumption that simplifies exposition. Variable group

size is typically adressed in applied work by imposing parametric restrictions, but

can be accommodated nonparametrically in this setting by including group size as a

conditioning/explanatory variable.

Assumption 3 (Group interactions). Given individual types and peer groups, the

outcome for individual i is:

yi(T,G) = y
(
τi, {τj}gi=gj

)
(7)

where y : T n → R is an unknown function.

Assumption 3 implies anonymous/exchangeable spillovers within peer groups, no

spillovers across peer groups, no direct effects of group assignment itself itself, and no

post-assignment random factors that might affect the outcome. Direct effects of group
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assignment and post-assignment random factors are common in applied work but can

be incorporated into the model in various ways for specific applications.

Assumption 4 (Discrete characteristics). The support of xi is:

Sx ≡ {e0, e1, . . . , eK} (8)

where ek ∈ {0, 1}K is the unit vector of length K ≥ 1 containing one in column k and

zero elsewhere; and the probability distribution4 of xi is fully described by:

µc ≡ Pr(xi = ec) (for all c ∈ 0, 1, . . . ,K)

µ ≡ E(xi) =
[
µ1 · · · µK

]
(9)

Assumption 4 abstracts from functional form considerations by taking the observable

characteristics xi to be a K-vector of categorical dummy variables. If the original set of

individual characteristics does not have this structure, the researcher can generate this

structure by binning continuous variables, including interactions, etc. Assumption 4

also implies that the K-vector of peer average characteristics x̄i fully describes the

frequency distribution of observed characteristics within individual i’s peer group.

Assumption 5 (Rank condition). Let di = vec(1,xi, x̄i,x
′
ix̄i). Then E(d′

idi) is full

rank.

Assumption 5 is the standard rank condition needed for identification of relevant

regression (best linear predictor) coefficients from the joint distribution of observables

(yi,xi, x̄i).

Example 2 (Variable selection for classmate gender effects). Continuing the classmate

gender effects example, suppose the researcher decides to only include a single (K = 1)

binary gender variable:

xi ≡

1 if student i is male

0 if student i is female

This choice satisfies Assumption 4 since xi ∈ {0, 1} = {e0, e1}.
If the researcher also wishes to include a lagged test score in the model, Assumption 4

could be satisfied by binning the test score (e.g. into quartiles or deciles), and interacting

the binned test score with gender. With B bins for the test score, xi would be a unit

vector of length K = 2B − 1.

4Note that µ0 = 1−
∑K

c=1 µc is not included in the vector µ but can be expressed as a function of it.
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2.3 Additional (optional) assumptions

This section defines several additional assumptions that are not maintained throughout

the paper, but rather are required for particular propositions.

The first set of optional assumptions constrains the group selection mechanism. As

usual, some source of purely random variation in exposure to treatment is needed to

identify causal effects. In this setting, causal inference on the effect of peer groups will

require some form of random assignment to peer groups. Simple random assignment is

the most straightforward scenario, but the weaker assumption of conditional random

assignment is often sufficient to identify causal effects. Section 4.2 shows the role of

random assignment in identification.

Definition 1 (Simple random assignment). The group selection mechanism fG|T

satisfies simple random assignment (RA) if:

G ⊥⊥ T (RA)

i.e., peer group assignment does not depend on one’s unobservable type or any other

predetermined characteristics.

Definition 2 (Conditional random assignment). The group selection mechanism fG|T

satisfies conditional random assignment (CRA) based on observed characteristics

if:

G ⊥⊥ T|X (CRA)

i.e., peer group assignment may depend on one’s observable characteristics but does not

otherwise depend on one’s unobservable type.

An important difference between these two forms of random assignment is that

simple random assignment does not constrain the researcher’s choice of background

characteristics to include in xi. In contrast, conditional random assignment requires xi

to include all characteristics that affect group assignment.

The second set of optional assumptions constrain the outcome function to be

separable. Separability is typically not required for identification, but it simplifies

analysis and interpretation, and is shown in Section 4.1 to support commonly-used

methods such as the linear-in-means model.

Definition 3 (Peer separability). Outcomes are peer-separable (PS) if the effect of

replacing one peer with another does not depend on one’s other peers:

y
(
τi,
{
τ ′j , τ

})
− y (τi, {τj , τ}) = y

(
τi,
{
τ ′j , τ

′})− y
(
τi,
{
τj , τ

′}) (PS)
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for any τi, τj , τ
′
j ∈ T and τ, τ ′ ∈ T n−2.

Definition 4 (Own separability). Outcomes are own-separable (OS) if the effect of

replacing one peer group with another does not depend on one’s own type:

y
(
τi,
{
τ ′
})

− y (τi, {τ}) = y
(
τ ′i ,
{
τ ′
})

− y
(
τ ′i , {τ}

)
(OS)

for any τi, τ
′
i ∈ T and τ, τ ′ ∈ T n−1.

Outcomes that are neither own-separable nor peer-separable will be called non-

separable. Note that both forms of separability are constraints on how the unobserved

types enter into the outcome, and do not depend on the specific characteristics in xi.

3 Defining social effects

Causal social effects can be defined in this setting by stating an explicit potential outcome

function and set of counterfactuals. Individual characteristics are predetermined (as in

Graham et al. (2010)) rather than manipulable (as in Manski (2013)), so the applicable

counterfactuals in this model relate to the peer group assignment, and not to the

characteristics of any specific individual.

Definition 5 (Potential outcomes). Individual i’s peer group is defined as:

pi ≡ p(i,G) ≡ {j ̸= i : gj = gi} (10)

and their potential outcome function is defined as:

yi(p) ≡ y
(
τi, {τj}j∈p

)
(11)

where p is any size n− 1 subset of I \ {i}.

That is, the observed outcome for individual i is yi(pi), and the counterfacutal

outcome yi(p) is the outcome that would have been observed if individual i had instead

been assigned the counterfactual peer group p.

Counterfactual peer group assignments can be conceptualized in three distinct ways.

We can consider the effect of changing a single peer (peer effects), an entire peer

group (group effects), or the peer group assignment mechanism itself (reallocation

effects). In addition, these effects can be defined for the average individual in the

population (average effects), or conditioned on the observed characteristics of the

treated individual (conditional effects).
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This section will develop quantitative definitions of peer effects and group effects in

terms of the potential outcome function of a representative individual. Reallocation

effects are addressed as an extension in Section 5.

3.1 Peer effects

Peer effects can be defined is the average effect of replacing a single peer of one

observed type with a single peer of another observed type.

Definition 6 (Average peer effect). The average peer effect (APEk) of peers of

observed type k is defined as:

APEk ≡ E
(
yi({j} ∪ p̃)− yi(

{
j′
}
∪ p̃)

∣∣xj = ek,xj′ = e0
)

(12)

where p̃ is a purely random draw of n− 2 peers from I \ {i, j, j′}.

Although equation (12) looks complex, the concept is simple. Take a randomly-

selected individual (i) with a randomly-constructed peer group (p̃), and replace a

randomly-selected peer (j′) of the base observed type (xj′ = e0) with a randomly-

selected peer (j) of observed type k (xj = ek). The average peer effect is the predicted

change in this individual’s outcome.

If we think of interaction with a given peer as a unique “treatment,”, average peer

effects can be interpreted as describing the heterogeneity of these treatment effects

across observed types, and are thus analogous to the conditional average treatment

effect estimated in the literature on heterogeneous treatment effects (Abrevaya et al.,

2015). One difference from a typical treatment effects setting is that there is no natural

“untreated” state, so average peer effects are defined relative to the average peer in some

arbitrarily selected base population. Regardless of the base population, average peer

effects can be used to make comparisons between any two observed types: the average

effect of replacing the average observed type k peer with the average observed type ℓ

peer is APEℓ −APEk.

Rather than averaging across all treated individuals, researchers may also be inter-

ested in how peer effects vary with the observed characteristics of the treated individual:

Definition 7 (Conditional peer effect). The conditional peer effect (CPEck) of

peers of observed type k on treated individuals of observed type c is defined as:

CPEck ≡ E
(
yi({j} ∪ p̃)− yi(

{
j′
}
∪ p̃)

∣∣xi = ec,xj = ek,xj′ = e0
)

(13)

where p̃ is a purely random draw of n− 2 peers from I \ {i, j, j′}.
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That is, CPEck can be considered the effect on the average observed type c individual

of replacing the average base-type peer with the average observed type k peer.

Note that average and conditional peer effects are both well-defined under the

model’s maintained assumptions and do not require the data generating process to

satisfy optional assumptions such as separability or random assignment. However, these

assumptions may be important for identification and interpretation.

Example 3 (Peer effects by classmate gender). Continuing the classmate gender effects

example, average and conditional peer effects can be defined as follows:

� APE1 is the effect on the average student of replacing the average female peer

with the average male peer.

� CPE01 is the effect on the average female student of replacing the average female

peer with the average male peer.

� CPE11 is the effect on the average male student of replacing the average female

peer with the average male peer.

Note that APE1 will be a weighted average of CPE01 and CPE11.

3.2 Group effects

Peer group effects can be defined as the average effect of replacing the entire peer group

with another peer group that has a different distribution of observable characteristics.

These effects can be distinct from average peer effects when peer effects are non-

separable. For example, a hyperactive classmate may be more disruptive if there are

other hyperactive students in the classroom, or the social dynamics of a classroom may

change if girls outnumber boys. These cases may imply nonlinear relationships between

peer group composition and outcomes (Hoxby and Weingarth, 2005).

As discussed in Section 2.2, the maintained assumptions of constant group size

(Assumption 2) and discrete observed characteristics (Assumption 4) imply that x̄i has

a finite support Sx̄ and provides a complete description of the frequency distribution

of observed characteristics among i’s peers. That is, person i has exactly (n − 1)x̄ik

peers of observed type k. This greatly simplifies the modeling of nonlinearity because

any (linear or nonlinear) function of observed peer characteristics is equivalent on the

support to a linear (affine) function of some saturated categorical vector constructed

from x̄i.

Definition 8 (Saturated peer group variable). Let the saturated peer group variable
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z∗(x̄i) be defined by:

z∗(x̄i) =
A∑

a=1

eaI (m(x̄i) = a) (14)

where A = |Sx̄| − 1, m : Sx̄ → {0, 1, . . . , A} is an arbitrary strict ordering on Sx̄, and

ea is the unit vector of length A containing one in column a and zero elsewhere.

Saturated peer group variables allow for a very general model, but the support of

x̄i is often too large for z∗(x̄i) to be a practical explanatory variable. In that case, the

researcher may prefer a more parsimonious regression model based on binning x̄i.

Definition 9 (Binned peer group variable). Let the binned peer group variable

zi ∈ {0, 1}B be defined by:

zi = z(x̄i) =

B∑
b=1

ebI
(
x̄i ∈ Sb

x̄

)
(15)

where (S0
x̄,S

1
x̄, . . . ,S

B
x̄ ) is a partition of Sx̄ (the support of x̄i), and eb is the unit vector

containing one in column b and zero elsewhere. Bin b is a singleton if |Sb
x̄| = 1 and

pooled if |Sb
x̄| > 1.

The binned group variable zi is defined by the researcher, and can include any mix

of singleton and pooled bins. Note that the saturated group variable is a special case of

a binned group variable whose bins are all singletons, and that any binned variable can

be written as a linear function of the saturated variable.

Example 4 (Binned group variables for classmate gender). Continuing the class-

mate gender effects example, the gender composition of student i’s classroom is fully

described by x̄i ∈ [0, 1], the proportion of classmates who are male. Its support is

Sx̄ =
{
0, 1

n−1 , . . . , 1
}

which has |Sx̄| = n elements. The researcher can construct

various binned group variables from x̄i including:

� Majority-female or majority-male (B = 1):

zi = z(x̄i) =

0 if 0.0 ≤ x̄i ≤ 0.5

1 if 0.5 < x̄i ≤ 1.0
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� Alll-female, all-male, and mixed (B = 2):

zi = z(x̄i) =


[ 0 0 ] if x̄i = 0.0

[ 1 0 ] if x̄i = 1.0

[ 0 1 ] if 0.0 < x̄i < 1.0

� A saturated variable (B = A = n− 1) that nests all other options:

zi = z∗(x̄i) =



[ 0 0 . . . 0 ] if x̄i = 0.0

[ 1 0 . . . 0 ] if x̄i =
1

n−1

...

[ 0 0 . . . 1 ] if x̄i = 1.0

Given a researcher’s choice of zi, one can define group effects with or without

conditioning on the observable characteristics of the treated individual:

Definition 10 (Group effects). The average group effect of a bin b peer group is

defined as:

AGEb ≡ E(yi(p̃)|zi(p̃) = eb)− E(yi(p̃)|zi(p̃) = e0) (16)

and the conditional group effect of a bin b peer group on treated individuals of

observed type c is defined as:

CGEcb ≡ E(yi(p̃)|xi = ec, zi(p̃) = eb)− E(yi(p̃)|xi = ec, zi(p̃) = e0) (17)

where p̃ is a purely random draw5 of n− 1 peers from I \ {i}.

The average group effect can be interpreted as the effect on a randomly-selected

individual of replacing a randomly constructed bin-zero peer group with a randomly

constructed bin-b peer group, and the conditional group effect is the same quantity

for a randomly-selected individual from a particular category. As with average and

conditional peer effects, average and conditional group effects are well-defined under

the maintained assumptions of the model, though their identification and interpretation

may depend on additional conditions.

5Note that AGEb and CGEcb are defined in terms of a purely random draw of peers, and thus imposes a
particular conditional distribution for Pr(x̄i|zi). Proposition 7 in Section 5.2 shows that AGEb and CGEcb

are only informative about peer group reallocations that preserve this conditional distribution (e.g., if Sb
x̄ is a

singleton). See Section 5.2 for additional details.
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Example 5 (Group effects for classmate gender). Continuing the classmate gender

effects example, let zi = I (x̄i > 0.5) be an indicator for whether the peer group is

majority-male. For convenience, assume n is even so that peer group size is odd and all

peer groups are either majority-male or majority-female. Then the following average

and conditional group effects can be defined:

� AGE1 is the effect on the average student of replacing the average majority-female

peer group with the average majority-male peer group.

� CGE01 is the effect on the average female student of replacing the average majority-

female peer group with the average majority-male peer group.

� CGE11 is the effect on the average male student of replacing the average majority-

female peer group with the average majority-male peer group.

The “average majority-male peer group” here is based on the distribution of group

composition that would be observed under random assignment, which places high weight

on groups where boys are a slight majority and low but nonzero weight on groups that

are all or almost all boys.

4 Main results

This section demonstrates the relevant properties of the model. The main result is

Proposition 4, which shows conditions under which simple linear regression models can

be intepreted as measuring peer effects or peer group effects as defined in Section 3.

For example, peer separability and random assignment are sufficient conditions for the

simple linear-in-means model to be interpreted as measuring average peer effects. Other

propositions consider weaker assumptions and more complex estimands, and typically

show that the effect of interest can be expressed in terms of either linear regression

coefficients or a weighted average of such coefficients.

4.1 Aggregation and separability

Proposition 1 below shows that simple causal effects can typically be interpreted as a

weighted average of more complex effects, with weights that depend on the probability

distribution of xi.

Proposition 1 (Aggregation). Given Assumptions 1-5:
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1. Conditional effects can be aggregated to yield average effects:

APEk =
K∑
c=0

µcCPEck (18)

AGEb =
K∑
c=0

µcCGEcb (19)

where µc = E(xic) = Pr(xi = ec) as defined earlier.

2. Saturated group effects can be aggregated to yield group effects for any other

partition:

AGEb =

K∑
c=0

A∑
a=1

µcwab(µ)CGE
∗
ca (20)

CGEcb =

A∑
a=1

wab(µ)CGE
∗
ca (21)

where CGE∗
ca is the conditional group effect for bin a of ithe saturated variable

z∗(x̄i), wab(µ) is a weighting function given by:

wab(µ) =

∑
x̄∈Sb

x̄:z
∗(x̄)=ea

M(x̄, n, µ)∑
x̄∈Sb

x̄
M(x̄, n, µ)

−
∑

x̄∈S0
x̄:z

∗(x̄)=ea
M(x̄, n, µ)∑

x̄∈S0
x̄
M(x̄, n, µ)

(22)

and:

M(x̄, n, µ) =
(n− 1)!∏K

c=0((n− 1)x̄·c)!

K∏
c=0

µ(n−1)x̄·c
c (23)

is the probability of drawing the value (n− 1)x̄ from a multinomial distribution

with (n− 1) trials and categorical probability vector µ.

The results in Proposition 1 are not particularly surprising, but are useful to keep

in mind when choosing and comparing model specifications.

Proposition 2 below shows how separability assumptions can be employed to simplify

the analysis. In particular, a peer-separable potential outcome function can always

be written as the sum of a set of individual-specific or pair-specific latent variables.

Average and conditional peer effects can also be expressed in terms of conditional

expectations of these latent variables, and Proposition 4 in the next section establishes

conditions under which these conditional expectations are identified.

Proposition 2 (Separability). Given Assumptions 1-5:
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1. If outcomes are peer-separable (PS), then each individual’s potential outcome

function can be expressed in the form:

yi(p) =
∑
j∈p

PEij (24)

where PEij = PE(τi, τj) and:

CPEck = E(PEij |xi = ec,xj = ek)− E(PEij |xi = ec,xj = e0) (25)

APEk = E(PEij |xj = ek)− E(PEij |xj = e0) (26)

for all observable categories (c, k).

2. If outcomes are peer-separable and own-separable (PS, OS), then each individual’s

potential outcome function can be expressed in the form:

yi(p) = OEi +
∑
j∈p

PEj (27)

where OEi = OE(τi), PEj = PE(τj) and:

CPEck = APEk = E(PEj |xj = ek)− E(PEj |xj = e0) (28)

for all observable categories (c, k).

Separability assumptions are convenient but not necessarily correct. Fortunately,

they have testable implications as shown in Proposition 3 below.

Proposition 3 (Testable implications of separability). Given Assumptions 1-5:

1. If peers are randomly assigned conditional on observables (CRA) and outcomes

are peer-separable (PS), then:

L(yi|xi, x̄i,x
′
ix̄i, zi) = L(yi|xi, x̄i,x

′
ix̄i) (29)

2. If peers are randomly assigned conditional on observables (CRA) and outcomes

are peer-separable and own separable (PS, OS), then:

L(yi|xi, x̄i,x
′
ix̄i) = L(yi|xi, x̄i) (30)

The restrictions in equations (29) and (30) imply that certain coefficients in a linear

regression are zero, which can be easily tested using standard methods. Note that
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separability is a property of the outcome function y(·, ·) and not of the particular

explanatory variables (xi, zi) chosen by the researcher. As a result, the implications

in Proposition 3 hold for any (xi, zi), though the power of any test based on these

implications depends on the specific variables chosen by the researcher.

4.2 Identification

The results in this section show conditions under which the social effects defined in

Section 3 are identified from the joint distribution of observable variables (Y,X,G).

The identification results are constructive and suggest simple estimators whose imple-

mentation is described in Section 4.3.

Proposition 4 below shows identification under a simple random assignment research

design. Proposition 5 later in this section shows identification under the weaker

assumption of conditional random assignment, and Proposition 9 in Section 6 shows

identification under a more complex nested assignment design.

Proposition 4 (Identification with random assignment). Given Assumptions 1-5:

1. If peers are randomly assigned (RA) and outcomes are peer-separable (PS), then

average and conditional peer effects are identified from the joint distribution of

(yi,xi, x̄i):

APEk =
α2k

n− 1
(31)

CPEck =
β2k + β3ck
n− 1

(32)

where (α2k, β2k, β3ck) are coefficients from the best linear predictors:

L(yi|xi, x̄i) ≡ α0 + xiα1 + x̄iα2 (33)

L(yi|xi, x̄i,x
′
ix̄i) ≡ β0 + xiβ1 + x̄iβ2 + xiβ3x̄

′
i (34)

i.e., α2k is element k of α2, β2k is element k of β2, β3ck is the element in row c

and column k of β3 for all c > 0, and β30k ≡ 0 for all k.

2. If peers are randomly assigned (RA), then average and conditional group effects

are identified from the joint distribution of (yi,xi, zi):

AGEb = γ2b (35)

CGEcb = δ2b + δ3cb (36)
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where (γ2b, δ2b, δ3cb) are coefficients from the best linear predictors:

L(yi|xi, zi) ≡ γ0 + xiγ1 + ziγ2 (37)

L(yi|xi, zi,x
′
izi) ≡ δ0 + xiδ1 + ziδ2 + xiδ3z

′
i (38)

i.e., γ2b is element b of γ2, δ2b is element b of δ2, δ3cb is the element in row c and

column b of δ3 for all c > 0, and δ30b ≡ 0 for all b.

Proposition 4 shows conditions under which each causal social effect defined in

Section 3 can be expressed in terms of a linear regression model whose coefficients can

be identified from the joint distribution6 of observables.

Example 6 (Identifying peer effects for classmate gender). Continuing the classmate

gender effects example, suppose two researchers have access to a data set in which

students are randomly assigned to classrooms:

� Researcher A estimates the effect of male classmates on test scores using the

conventional linear-in-means model (33).

� Researcher B estimates the heterogeneous linear-in-means model (34) using the

same data as Researcher A.

Under the assumption of peer separability, Part 1 of Proposition 4 allows Researcher A

to interpret his coefficient on x̄i as the effect on the average student of replacing the

average female classmate with the average male classmate, and allows Researcher B to

interpret her coefficient on x̄i as the effect on the average female student of replacing

the average female classmate with the average male classmate. Adding the coefficient

on the interaction term x′
ix̄i gives Researcher B the effect on the average male student

of replacing the average female classmate with the average male classmate. Note that:

� There are no other control variables, and gender does not appear in some underlying

structural model; instead this analysis is interpreted as an analysis of heterogeneity.

� Another researcher with the same data but other xi variables - race, ethnicity,

language spoken at home, immigration status, etc. - could explore those other

aspects of heterogeneity either separately or in any combination.

� Researcher B’s finding of heterogeneity (i.e. a nonzero coefficient on the interaction

term) does not invalidate Researcher A’s analysis based on equation (33) that

ignores heterogeneity.

6Note that (yi,xi, zi) can be derived from (yi,xi, x̄i), which can be derived from (Y,X,G).
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In other words, a wide range of empirical specifications can be estimated and each

provides valid and potentially useful results.

Although the assumption of peer separability provides a simple interpretation of

linear-in-means results, empirical researchers have shown increasing interest in contextual

effects that go beyond the linear-in-means model, and have repeatedly found evidence

for such nonlinearities.

Example 7 (Identifying group effects for classmate gender). Continuing the classmate

gender effects example, suppose that Researcher C and Researcher D have the same

data as Researcher A and Researcher B, but:

� Researcher C divides peer groups into majority-female and majority-male; i.e.,

zi = I (x̄i > 0.5).

� Researcher D divides peer groups into all-male, all-female, and mixed.

� Each researcher estimates a regression of yi on (xi, zi) for their chosen zi.

Then Part 2 of Proposition 4 says that Researcher C’s coefficient on zi can be interpreted

as the effect on the average student of replacing the average (randomly constructed)

majority-female peer group with the average (randomly constructed) majority-male peer

group, and that Researcher D’s coefficients can be similarly interpreted with respect to

her chosen zi. Note that:

� The results in Proposition 4 apply regardless of the researcher’s choice of zi.

� Researcher C or Researcher D’s results could be used to test peer separability, and

may thus invalidate Researcher A and Researcher B’s results.

Although identification and interpretation are simplest with random assignment,

many of the results in Proposition 4 also hold under conditional random assignment

while others require minor modfications. To show this, it is first necessary to show (in

Lemma 1 below) that the conditional expectation function is the same under random

assignment and conditional random assignment.

Lemma 1 (Conditional random assignment). Given Assumptions 1-5, if peers are

randomly assigned conditional on observable characteristics (CRA), then:

E(yi|xi = x, x̄i = x̄) = E(yi(p̃)|xi = x, x̄i(p̃) = x̄) (39)

where p̃ is a purely random draw of (n− 1) peers from I \ {i}.

Proposition 5, which shows identification under conditional random assignment,

then follows.
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Proposition 5 (Identification with conditional random assignment). Given Assump-

tions 1-5:

1. If peers are randomly assigned conditional on observable characteristics (CRA)

and outcomes are peer separable (PS), then average and conditional peer effects

are identified from the joint distribution of (yi,xi, x̄i):

APEk =

K∑
c=0

µc
β2k + β3ck
n− 1

(40)

CPEck =
β2k + β3ck
n− 1

(41)

where (β2k, β3ck) are defined as in equation (34).

2. If peers are randomly assigned conditional on observable characteristics (CRA),

then average and conditional group effects are identified from the joint distribution

of (yi,xi, x̄i):

AGEb =
K∑
c=0

A∑
a=1

µcwab(µ)(λ2a + λ3ca) (42)

CGEcb =
A∑

a=1

wab(µ)(λ2a + λ3ca) (43)

where λ = (λ0, λ1, λ2, λ3) are the coefficients from the best linear predictor:

L(yi|xi, z
∗(x̄i),x

′
iz

∗(x̄i)) ≡ λ0 + xiλ1 + z∗(x̄i)λ2 + xiλ3z
∗(x̄i)

′ (44)

i.e., λ2a is element a of λ2, λ3ca is the element in row c and column a of λ3 for

all c > 0, and λ30a ≡ 0 for all a.

While Proposition 5 applies more generally than Proposition 4, this generality comes

at the cost that some estimands are weighted averages of regression coefficients rather

than just the coefficients. The reason this is the case is that both peer effects and

group effects are defined in terms of a hypothetical randomly-assigned peer group, so

some reweighting is required when the assignment mechanism deviates from simple

random assignment. As in Proposition 1, the probability weights in Proposition 5 can

be recovered from the probability distribution of xi.
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4.3 Estimation and inference

The identification results in Propositions 4 and 5 are constructive and suggest simple

plug-in estimators that are easily implemented in standard statistical packages. This

section provides an informal discussion of estimation and inference in this setting.

Suppose the researcher has a sample of N observations on (yi,xi, x̄i) from a large

population that satisfies the model assumptions. Sampling models vary in the applied

literature, so rather than specifying the details of the sampling scheme we simply assume

it satisfies all conditions required for:

√
N
(
ψ̂ − ψ

)
D→ N(0,Σ) (45)

where ψ ≡ (µ, α, β, γ, δ, λ) is a vector of previously-defined population means and best

linear predictor coefficients, and ψ̂ ≡ (µ̂, α̂, β̂, γ̂, δ̂, λ̂) is a consistent and asymptotically

normal estimator of ψ. In most applications, the researcher will have a cluster sample

of size N = nG constructed from data on all n members of G randomly selected

groups, µ̂ will be the sample average of xi, and (α̂, β̂, γ̂, δ̂, λ̂) will be the OLS regression

coefficients. In other applications, the researcher may observe data for a random sample

of individuals, each of whom can be linked to some aggregate data source such as census

tract characteristics.

If peers are randomly assigned, Proposition 4 shows that peer and group effects

correspond to best linear predictor coefficients or linear combinations of those coefficients:

ÂPEk =
α̂2k

n− 1
if (PS, RA) (46)

ĈPEck =
β̂2k + β̂3ck
n− 1

if (PS, RA) (47)

ÂGEb = γ̂2b if (RA) (48)

ĈGEcb = δ̂2b + δ̂3cb if (RA) (49)

If peers are randomly assigned conditional on observables, Proposition 5 shows that

peer and group effects can be expressed as linear combinations of best linear predictor

coefficients or as weighted averages of those coefficients. As a result, they can be
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estimated by:

ÂPEk =
β̂2k +

∑K
c=0 µ̂cβ̂3ck

n− 1
if (PS, CRA) (50)

ĈPEck =
β̂2k + β̂3ck
n− 1

if (PS, CRA) (51)

ÂGEb =

K∑
c=0

A∑
a=0

µ̂cwab(µ̂)(λ̂2a + λ̂3ca) if (CRA) (52)

ĈGEcb =

A∑
a=0

wab(µ̂)(λ̂2a + λ̂3ca) if (CRA) (53)

Five of these eight estimators are just linear combinations of OLS coefficients, so

the researcher can apply standard cluster-robust asymptotic inference procedures to

construct standard errors and confidence intervals, or to perform hypothesis tests.

Inference is slightly more complicated for the three estimators that include weights

based on µ̂, as their asymptotic variance depends on the joint distribution of µ̂ and

the regression coefficients. A straightforward general approach is to define ψ̂ as the

just-identified GMM estimator7 for the vector of moment conditions:

E




xi − µ

yi − α0 − xiα1 − x̄iα2

x′
i(yi − α0 − xiα1 − x̄iα2)

etc.


 = 0 (54)

and Σ̂ as the associated (cluster-robust) GMM variance matrix. Under the usual GMM

regularity conditions:

Σ̂
P→ Σ (55)

The parameter (vector) of interest can then be defined as θ = θ(ψ) for some differentiable

function θ(·), and its estimator can be defined as θ̂ = θ(ψ̂). Then θ̂ has the asymptotic

distribution: √
N
(
θ̂ − θ

)
D→ N(0, (∇θ(ψ))Σ(∇θ(ψ))′) (56)

where ∇θ(ψ) is the Jacobian matrix of θ(ψ), and the asymptotic variance can be

estimated:

(∇θ(ψ̂))Σ̂(∇θ(ψ̂))′ P→ (∇θ(ψ))Σ(∇θ(ψ))′ (57)

7Note that the GMM estimator here is identical to the OLS estimator; the purpose of applying GMM
here is to use commonly-available tools to estimate the full Σ matrix including the asymptotic covariance of
µ̂ with the regression coefficients.
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Similarly, a hypothesis of the form θ(ψ) = 0 can be tested using the Wald statistic:

H0 : θ(ψ) = 0 =⇒ θ(ψ̂)′
(
(∇θ(ψ̂))Σ̂(∇θ(ψ̂))′

)−1
θ(ψ̂)

D→ χ2(r) (58)

where r is the number of restrictions imposed by the null. Each of these steps is standard,

and can be implemented by commonly-available software (e.g., the gmm, nlcom, and

testnl commands in Stata).

Note that these estimators have been defined in terms of a set of categories for

xi and bins for zi (if applicable) that have been predetermined by the researcher.

This scenario fits many applications in which the researcher has a specific research

question or pre-analysis plan and the individual characteristics relevant to that question

are naturally discrete. When individual characteristics of interest are continuous or

high-dimensional, or when peer groups are large (so that there are many possible bins

for defining zi), researchers may want to construct categories and bins in a data-driven

manner that balances model flexibility with statistical precision. Tree-based methods

for estimating conditional average treatment effects such as those developed in Athey

and Imbens (2016) or Wager and Athey (2018) can be adapted to this setting. Similarly,

the additive structure of peer effects under separability can be exploited by a sieve-based

method when the individual characteristic of interest is continuous. These extensions

are beyond the scope of this paper and left to future research.

5 Extension: Reallocation effects

The peer and group effects defined in Section 3 predict the effect of a change in the

composition of a representative individual’s peer group. Given a fixed population of

individuals, any change in the composition of one peer group implies a corresponding

change in the composition of at least one other peer group. As a result, a researcher may

also be interested in the somewhat different question of reallocation effects: how average

outcomes are affected by a feasible change to the entire social network (Bhattacharya,

2009; Graham et al., 2010). This section defines the set of reallocations that can be

considered as well as the corresponding reallocation effects, and discusses identification

and estimation.

5.1 Defining reallocation effects

As with peer and group effects, the first step is to define the relevant counterfactual,

which in this case is a reallocation of individuals across groups based on observed
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characteristics. Such a reallocation must be feasible given the frequency distribution of

characteristics.

Definition 11 (Feasible reallocation). A feasible reallocation mechanism is a

function GR : SI
x × [0, 1] → GI

n. A feasible reallocation is a random vector G̃R ≡
GR(X, ϵ) where GR is a feasible reallocation mechanism and ϵ is a random variable

with probability distribution ϵ|T ∼ U(0, 1).

The random variable ϵ serves as a randomization device that can be used to select

among observationally-equivalent (same value of xi) individuals and thus average over

the conditional distribution of unobserved heterogeneity. Feasible reallocations satisfy

conditional random assignment (CRA) by construction, and the actual allocation can

be treated as a feasible reallocation if it satisfies conditional random assignment.

Example 8 (Feasible reallocations by gender). Continuing the classmate gender effects

example, suppose for convenience that n and G are even and that exactly half of students

are boys. A researcher could define reallocation effects for any of the following feasible

reallocation mechanisms:

� Simple random assignment:

GR(X, ϵ) is a random draw from GI
n.

� All classes single-gender:

GR(X, ϵ) is a random draw from
{
(g1, . . . , gI) ∈ GI

n :
∑

i:gi=g xi ∈ {0, n}
}

� All classes perfectly mixed:

GR(X, ϵ) is a random draw from
{
(g1, . . . , gI) ∈ GI

n :
∑

i:gi=g xi = n/2
}

Each feasible reallocation implies a probability distribution over outcomes, so the

predicted average outcome can be compared across any two feasible reallocations.

Definition 12 (Reallocation effects). The average reallocation effect of the feasible

reallocation mechanism GR is defined as:

ARE(GR) ≡ E(yi(p(i,GR(X, ϵ)))− yi(p̃)) (59)

and its conditional reallocation effect on treated individuals of observed type c is

defined as:

CREc(GR) ≡ E(yi(p(i,GR(X, ϵ)))− yi(p̃)|xi = ec) (60)

where p̃ is a purely random draw of n− 1 peers from I \ {i}.
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Reallocation effects compare the predicted outcome under the proposed reallocation

mechanism to the predicted outcome under a benchmark allocation of simple random

assignment. The choice of benchmark is arbitrary, and predicted outcomes for any

two reallocation mechanisms G0 and G1 can be compared by calculating ARE(G1)−
ARE(G0).

As with peer and group effects, average and conditional reallocation effects have a

straightforward relationship, described in Proposition 6 below.

Proposition 6 (Aggregation for reallocation effects). Conditional reallocation effects

can be aggregated to yield average reallocation effects:

ARE(GR) =

K∑
c=0

µcCREc(GR) (61)

5.2 Identification of reallocation effects

Proposition 7 below describes how the reallocation effects defined in Section 5.1 can be

described in terms of the peer and/or group effects defined in Section 3.

Proposition 7 (Identification of reallocation effects). Let GR be a feasible reallocation

mechanism. Then given Assumptions 1-5:

1. If (S1
x̄, . . . ,S

B
x̄ ) are singletons, and Pr(x̄i(X,GR(X, ϵ)) ∈ S0

x̄) = 0, then:

ARE(GR) =
K∑
c=0

B∑
b=1

µc∆zcb(GR)CGEcb (62)

CREc(GR) =

B∑
b=1

∆zcb(GR)CGEcb (63)

where:

∆zcb(GR) ≡ Pr(x̄i(X,GR(X, ϵ)) ∈ Sb
x̄|xi = ec)

− Pr(x̄i(p̃) ∈ Sb
x̄|xi = ec)

(64)

2. If outcomes are peer-separable (PS), then:

ARE(GR) = (n− 1)

K∑
c=0

K∑
k=1

µc∆x̄ck(GR)CPEck (65)

CREc(GR) = (n− 1)
K∑
k=1

∆x̄ck(GR)CPEck (66)
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where:

∆x̄ck(GR) ≡ E(x̄ck(X,GR(X, ϵ))|xi = ec)− µk (67)

3. If outcomes are peer-separable and own-separable (PS, OS), then:

ARE(GR) = 0 (68)

CREc(GR) = (n− 1)
K∑
k=1

∆x̄ck(GR)APEk (69)

Proposition 7 implies that reallocation effects can be expressed as weighted averages

of peer and group effects that are identified from the joint distribution of (Y,X,G)

under conditions described in Propositions 4 and 5.

However, Part 1 of Proposition 7 indicates an important limitation when outcomes

are not peer-separable: identifying reallocation effects from the joint distribution of

(yi,xi, zi) requires that the partition of x̄i used to construct zi must assign a unique

value of zi for each distinct x̄i in the reallocation’s support. Values of x̄i outside of

that support can be pooled. The intuition here is that within a pooled category, the

distribution of zi does not pin down the distribution of x̄i, so two allocation rules may

have the same distribution of zi but not the same distribution of x̄i. This limitation

does not affect identification from the joint distribution of (Y,X,G) or (yi,xi, x̄i) since

the saturated model can always be constructed from either of these joint distributions.

Example 9 (Identifying classroom reallocation effects). Continuing the classmate

gender effects example, suppose the researcher estimates group effects based on five bins:

� All-boy (x̄i = 1)

� Majority-boy (0.5 < x̄i < 1),

� Exactly balanced (x̄i = 0.5)

� Majority-girl (0.0 < x̄i < 0.5)

� All-girl (x̄i = 0).

The all-boy, balanced and all-girl bins are singletons, while the majority-boy and majority-

girl bins are pooled. Proposition 7 implies that:

� The researcher’s results can be used to predict the result of a change from balanced

to gender-segregated classrooms, or from the baseline random allocation to a

balanced or gender-segregated allocation.
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� The researcher’s results cannot be used to predict the effect of a change from

balanced to majority-boy and majority-girl classrooms.

The natural solution to this issue is to choose a partition rich enough to identify the

(conditional) average reallocation effects needed to evaluate the reallocation(s) of interest.

This may not be practical for a given sample, so there will typically be a variance/bias

trade-off. There may not be enough classrooms in a singleton bin for adequate statistical

precision, and some pooling of similar classrooms can increase precision at a cost of

bias from aggregating bins with dissimilar average effects.

5.3 Estimating reallocation effects

Proposition 7 provides a starting point for estimating reallocation effects by a plug-in

method:

ÂRE(GR) =

0 if (PS, OS)∑K
c=0 µ̂cĈREc(GR) if (PS, CRA) or (singletons, CRA)

(70)

ĈREc(GR) =


(n− 1)

∑K
k=1∆x̄ck(GR, µ̂)ÂPEk if (PS, OS, CRA)

(n− 1)
∑K

k=1∆x̄ck(GR, µ̂)ĈPEck if (PS, CRA)∑B
b=1∆zcb(GR, µ̂)ĈGEcb if (singletons, CRA)

(71)

where:

∆x̄ck(GR, µ̂) ≡ E

(
x̄ik(X,GR)

∣∣∣∣xi = ec,

∑
j ̸=i xj

I − 1
= µ̂

)
− µ̂k (72)

∆zcb(GR, µ̂) ≡ Pr

(
x̄i(X,GR(X, ϵ)) ∈ Sb

x̄

∣∣∣∣xi = ec,

∑
j ̸=i xj

I − 1
= µ̂

)
− Pr

(
x̄i(p̃) ∈ Sb

x̄

∣∣∣∣xi = ec,

∑
j ̸=i xj

I − 1
= µ̂

) (73)

Both ∆x̄ck(GR, µ̂) and ∆zcb(GR, µ̂) can be calculated by enumeration, or approxi-

mated by simulation. The asymptotic properties of the estimators defined in (70) and

(71) depend on the specific reallocation mechanism GR chosen by the researcher, and

how the resulting value of ∆x̄ck(GR, µ̂) and/or ∆zcb(GR, µ̂) depends on µ̂. For example,

the delta method can be appplied if ∆x̄cb(GR, µ̂) is a differentiable function of µ̂.
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6 Extension: Nested assignment mechanisms

Although simple random assignment is the ideal setting for studying peer effects, many

empirical studies are based on a more complex research design in which individuals

are non-randomly assigned to large groups and then randomly assigned to smaller

groups nested within those large groups. For example, classroom peer effects are

typically estimated using a research design associated with Hoxby (2000): panel data

with multiple grade cohorts within multiple schools is used in combination with linear

fixed effects regression models to account for non-random selection into schools. The

key identifying assumption of this research design is that each cohort within a school

represents a random selection (due to random timing of birth) from a school-specific

distribution.

This section adds a general nested assignment design to the potential outcomes

framework developed in Section 2, demonstrates conditions under which the linear fixed

effects regression model will recover causal peer effects, and proposes alternative strate-

gies for applications in which those conditions do not hold. The model is accompanied

by a running example based on classroom peer effects in family income.

6.1 Maintained assumptions

The model is as defined in Section 2, with additional maintained assumptions as given

below.

Assumption 6 (Locations). Each peer group belongs to a location ℓ ∈ L ≡ {1, . . . , L}:

L ≡


ℓ1

ℓ2
...

ℓI

 ≡


ℓ(g1)

ℓ(g2)
...

ℓ(gI)

 ≡ L(G) (74)

where ℓi is the location for individual i and ℓ : G → L is a known function. To simplify

exposition, each location is assumed to include G
L peer groups.

Assignment to location will typically depend on unobserved type:

Assumption 7 (Locations and types). Each individual’s type is an independent draw

from a type distribution that varies by location:

Pr(T|L) =
I∏

i=1

fτ |ℓ(τi, ℓi) (75)
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where fτ |ℓ : T × L → [0, 1] is some unknown discrete conditional PDF.

Assumption 7 allows the distribution of unobserved types, and thus the distribution

of observed types and outcomes, to vary systematically across locations. As in Assump-

tion 1, the arbitrary ordering of individuals makes independence a mostly innocuous

assumption.

Finally, it will be convenient to assume that every observed type of individual can

be found at every location.

Assumption 8 (Full support). Every observed type can be observed at every location:

Pr(xi = ec ∩ ℓi = ℓ) > 0 (76)

for all (c, ℓ).

Assumption 8 ensures that various conditional expectations in the analysis below are

well-defined. The key results can be easily adapted to the case where some characteristic-

location pairs have zero probability.

Example 10 (Classmate family income). Consider a simplified classroom peer effects

setting in which students come from rich (xi = 1) or poor (xi = 0) families, and

attend the local public (ℓi = 1) or private (ℓi = 2) school. Both schools have a mix of

rich and poor students, but rich students are more likely to attend the private school

(E(xi|ℓi = 2) > E(xi|ℓi = 1)). Within each school, students are randomly assigned to

cohorts/classrooms as a result of random timing of birth (τi ⊥⊥ gi|ℓi).

6.2 Optional assumptions

The key assumption needed for any identification results in this setting is that there is

random assignment to groups within each location.

Definition 13 (Random assignment by location). Peer groups are randomly assigned

by location (RAL) if:

G ⊥⊥ T|L (RAL)

In addition, various restrictions on the outcome function y(·) are potentially helpful.

In the interest of space and clarity, the analysis will focus on identification of peer

effects under the assumption of peer separability. By Proposition 2, this will allow

assumptions on the outcome function to be stated in terms of the latent variable PEij .

The first pair of assumptions restrict cross-location heterogeneity in a manner that

is similar to standard fixed effects models. The assumption of location invariance allows
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peer effects to vary across observable types, but rules out all cross-location variation in

peer effects.

Definition 14 (Location invariance). If outcomes are peer-separable (PS), the pairwise

peer effects PEij are location invariant (LI) if :

E(PEij |xi = ec,xj = ek, ℓi = ℓ, ℓj = ℓ′) = E(PEij |xi = ec,xj = ek, ℓi = ℓ) (LI)

for all (c, k, ℓ, ℓ′).

The assumption of constant shifts allows own effects to vary systematically across

locations and across observable types, but rule out cross-location differences that vary

by observable type.

Definition 15 (Constant shifts). If outcomes are peer-separable (PS) and own-separable

(OS), the own effects OEi have constant shifts (CS) if:

E(OEi|xi = ek, ℓi = ℓ)− E(OEi|xi = e0, ℓi = ℓ) = E(OEi|xi = ek)− E(OEi|xi = e0)

(CS)

for all (k, ℓ).

Location invariance and constant shifts are both strong assumptions. Some results

can be obtained for the somewhat weaker assumption of partial location invariance.

Definition 16 (Partial location invariance). If outcomes are peer-separable (PS), the

pairwise peer effects PEij are partially location invariant (PLI) if:

E(PEij |xi = ec,xj = e0, ℓi = ℓ, ℓj = ℓ′) = E(PEij |xi = ec,xj = e0, ℓi = ℓ) (PLI)

for all (c, ℓ, ℓ′).

Partial location invariance essentially requires that location invariance applies to at

least one observed type. For convenience, this observed type is taken to be the base

type.

6.3 Simple fixed effects models

Proposition 8 gives conditions under which a researcher can intepret the coefficients of

a simple linear fixed effects model as measuring average peer effects.

Proposition 8 (Identification via fixed effects). Given Assumptions 1-8, suppose that

peer groups are randomly assigned by location (RAL),and outcomes are peer-separable
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(PS) and own-separable (OS) with location invariance (LI) and constant shifts (CS).

Then average peer effects are identified from the joint distribution of (yi,xi, x̄i, ℓi):

APEk = CPEck = α2k/(n− 1) (77)

for all (c, k), where:

E(yi|xi = x, x̄i = x̄, ℓi = ℓ) = αℓ
0 + xα1 + x̄α2 (78)

is a linear regression model with location fixed effects.

Intiutitively, fixed effects models allow location to matter for the outcome, but only

in ways that shift the outcome by the same amount for everyone at that location, and

that can be intepreted as reflecting differences in own effects and not differences in

peer effects. The example below suggests how strong these assumptions would be in a

typical application.

Example 11 (Assmptions needed for school fixed effects). Continuing the classmate

family income example, the assumptions needed for Proposition 8 would allow:

� rich students to be systematically better/worse students (own effect) than poor

students.

� rich students to be systematically better/worse peers (peer effect) than poor students.

� private school students to be systematically better/worse students than public school

students

but would not allow:

� private school students to be systematically better/worse peers than public school

students. This would violate location invariance (LI).

� the student quality gap between rich and poor students to vary across schools. This

would violate constant shifts (CS).

Although Proposition 8 is an identification result, it has straightforward implications

for estimation and inference. Equation (78) can be estimated by standard linear fixed

effects methods, and standard cluster-robust asymptotic inference applies.

6.4 Heterogeneous-coefficient models

Relaxing the strong assumptions needed for Proposition 8 yields a set of heterogeneous-

coefficient regression models that can be given varying causal intepretations.

33



For example, random assignment by location implies that the results of Proposition 4

can be applied on a location-by-location basis. To show this result, it is first necessary

to define location-specific peer effects and best linear predictors.

Definition 17 (Location-specific peer effects). Let location-specific peer effects

for location ℓ be defined as the average effect of replacing a randomly-selected peer from

the base category with a randomly-selected peer from another category and in the same

location:

APEℓ
k ≡ E

(
yi({j} ∪ q̃)− yi(

{
j′
}
∪ q̃)|xj = ek,xj′ = e0, ℓi = ℓj = ℓ

)
(79)

CPEℓ
ck ≡ E

(
yi({j} ∪ q̃)− yi(

{
j′
}
∪ q̃)|xj = ek,xj′ = e0,xi = ec, ℓi = ℓj = ℓ

)
(80)

where q̃ is a purely random draw of (n− 2) peers from I \ {i, j}.

Definition 18 (Location-specific best linear predictor). Let ℓ be a location, and let

di = d(xi, x̄i) be a vector of variables (possibly including constant and interaction

terms) such that E(d′
idi|ℓi = ℓ) is nonsingular. Then the location-specific best

linear predictor of yi given di for location ℓ is:

Lℓ(yi|di) ≡ diξ
ℓ (81)

where ξℓ ≡ E(d′
idi|ℓi = ℓ)−1E(d′

iyi|ℓi = ℓ)

As shown in Part 1 of Proposition 9 below, Proposition 4 can be applied location-

by-location to relate location-specific coefficients to the corresponding location-specific

peer effects. These location-specific peer effects can then be used to find reallocation

effects for any feasible reallocation across peer groups that keeps every individual within

the same location.

Unfortunately, within-location peer effects are generally insufficient to measure the

effect of reallocations across locations. This is a critical limitation that is typically not

addressed in empirical work, as many reallocations of interest (e.g. Example 12 below)

represent shifts across rather than within locations.

Results 2 and 3 in Proposition 9 below show that either form of location invariance

can allow (non-location-specific) peer effects to be expressed as the average of location-

specific effects. They are therefore identified and can be used to predict the result of a

feasible reallocation across locations.

Proposition 9 (Identification under random assignment by location). Given Assump-

tions 1-8:
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1. If peers are randomly assigned by location (RAL) and outcomes are peer-separable

(PS), then location-specific peer effects for each location ℓ ∈ L are identified from

the joint distribution of (yi,xi, x̄i, ℓi):

APEℓ
k =

αℓ
2k

n− 1
(82)

CPEℓ
ck =

βℓ2k + βℓ3ck
n− 1

(83)

where αℓ ≡ (αℓ
0, α

ℓ
1, α

ℓ
2) is the vector of coefficients from the location-specific best

linear predictor:

Lℓ(yi|xi, x̄i) ≡ αℓ
0 + xiα

ℓ
1 + x̄iα

ℓ
2 (84)

and βℓ ≡ (βℓ0, β
ℓ
1, β

ℓ
2, β

ℓ
3) is the vector of coefficients from the location-specific best

linear predictor:

Lℓ(yi|xi, x̄i,x
′
ix̄i) ≡ βℓ0 + xiβ

ℓ
1 + x̄iβ

ℓ
2 + xiβ

ℓ
3x̄

′
i (85)

2. If peers are randomly assigned by location (RAL) and outcomes are peer-separable

(PS) with location invariance (LI), then peer effects are identified from the joint

distribution of (yi,xi, x̄i, ℓi):

APEk =

∑K
c=0 µcE(βℓi2k + βℓi3ck|xi = ec)

n− 1
(86)

CPEck =
E(βℓi2k + βℓi3ck|xi = ec)

n− 1
(87)

for all (c, k).

3. If peers are randomly assigned by location (RAL) and outcomes are peer-separable

(PS) and own-separable (OS) with partial location invariance (PLI), then peer

effects are identified from the joint distribution of (yi,xi, x̄i, ℓi):

APEk = CPEck =
E(αℓi

2k|xi = ek)

n− 1
(88)

for all (c, k).

Designs based on random cohorts are common in the applied literature, but Propo-

sitions 8 and 9 show that they imply complications beyond those seen in a simple

or conditional random assignment design. Researchers using random cohort designs
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have the option of imposing strong restrictions on heterogeneity (as in Proposition 8),

by combining somewhat weaker restrictions with more explicit handling of hetereoge-

neous coefficients (as in Proposition 9), or by noting that the results only apply to

within-location comparisons and reallocations.

Example 12 (Within-school effects of rich and poor peers). Continuing the classmate

family income example, suppose the researcher is unwilling to assume location invariance.

Then within-location coefficients can be used to predict the average effect of:

� Replacing a poor public school student with a rich public school student (APE1
1)

� Replacing a poor private school student with a rich private school student (APE2
1).

However, these coefficients cannot be used to predict the average effect of replacing a

poor public school student with a rich private school student. Such a reallocation is

never observed in the data. The assumption of (partial) location invariance would make

this prediction possible becaue it implies that poor public school students and poor private

school students are equivalent as peers.

As with the other identification results in this paper, Proposition 9 has clear

implications for estimation and inference. The estimating equations (84) and (85) fit

within the framework of heterogeneous-coefficient linear panel data models. Wooldridge

(2010, p. 377-381) provides a useful overview of estimation, inference procedures, and

limitations for this class of models.

7 Extension: Direct contextual effects

As discussed in the introduction, much of the applied literature treats contextual effects

as if they were direct and constant. That is, the effect peers have on a particular

individual is a parametric function of a limited set of own and peer characteristics.

If the researcher has access to the correctly-specified model and full set of relevant

characteristics, this information is useful in identifying and interpreting both peer effects

and reallocation effects. Otherwise, the results may be subject to substantial omitted

variables bias. This section considers and analyizes direct contextual effects as a special

case of the model developed in previous sections.

Definition 19 (Direct contextual effects). Outcomes are subject to direct contextual

effects (DCE) in the full set of relevant characteristics x∗
i = x∗(τi) ∈ RK∗

if

there exists an unknown function h : RnK∗ → R and scalar ui = u(τi) such that:

y
(
τi, {τj}gj=gi

)
= h

(
x∗(τi), {x∗(τj)}gj=gi

)
+ u(τi) (DCE)
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and E(ui|x∗
i ) = 0.

That is, direct contextual effects are a fixed function of a specific set of relevant

characteristics. Note that the outcome is always subject to direct contextual effects in

the trivial case x∗(τi) = τi, so direct contextual effects are only a restrictive assumption

if one specifies a specific vector as the full set of relevant characteristics.

7.1 Identification and omitted variables bias

When the outcome is subject to direct contextual effects in the observed variables xi,

Proposition 10 below shows that the h(·) function is identified and can be estimated under

the usual conditions. This function can then be used to predict various counterfactuals,

including the average/conditional peer, group and reallocation effects defined earlier.

In addition, h(·) can be used to predict the result of any reallocation based only on its

effect on x̄i, while the estimands considered in Proposition 4 only predict the result of

conditionally random reallocations.

Proposition 10 also shows that direct contextual effects can overcome the limitations

of research designs based on random assignment by location. That is, if the model

exhibits direct contextual effects in xi, then any two individuals with the same observed

characteristics have the same effect on their peers. This is a sufficient condition for

location invariance, so the identification result in Part 2 of Proposition 9 applies.

Proposition 10 (Identification of direct contextual effects). Given Assumptions 1-8,

if outcomes are subject to direct contextual effects (DCE) in xi, then:

1. If peers are conditionally randomly assigned (CRA), then h(·) is identified from

the joint distribution of (yi,xi, x̄i):

h
(
x,
{
x1, . . . ,xn−1

})
= E

yi
∣∣∣∣∣∣xi = x, x̄i =

1

n− 1

n−1∑
j=1

xj

 (89)

for all values on the support of (xi, x̄i).

2. If peers are randomly assigned by location (RAL) and outcomes are peer-separable

(PS), then average and conditional peer effects are identified from the joint distri-

bution of (yi,xi, x̄i, ℓi):

APEk =

∑K
c=0 µcE(βℓi2k + βℓi3ck|xi = ec)

n− 1
(90)

CPEck =
E(βℓi2k + βℓi3ck|xi = ec)

n− 1
(91)
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for all (c, k).

In other words, the assumption that the outcome is subject to direct contextual

effects in xi provides additional identifying power. Unfortunately, the data requirements

for that assumption are substantial - the researcher needs data on everything about

each person that potentially affects their influence on other people - and unlikely to be

met in most applications. One exception is where the researcher has a clear structural

model of the causal channels by which peers influence one another, and can observe all

of these channels in the available data.

When the observed characteristics form a strict subset of the relevant characteristics,

estimation of the “true” h(·) is subject to omitted variables bias in the usual manner,

and any resulting predictions may also be biased. However, the main results in this

paper still apply, and average/conditional peer and group effects are identified under

the usual conditions. As a result, a simple regression model with one or two peer

characteristics is often preferable to a more complex model, unless the more complex

model can be assumed to include the full set of relevant characteristics.

Example 13 (Peer gender, disruptive behavior, and direct contextual effects). Return-

ing to the classmate gender effects example, consider two researchers (Researcher A

and Researcher B) with data on (yi,xi, x̄i) from a set of randomly-assigned classrooms

where xi = (xi1, xi2, xi1xi2) and:

� xi1 is an indicator for whether student i is male.

� xi2 is an indicator for whether student i engages in disruptive behavior.

� Boys are more likely to engage in disruptive behavior

E(xi2|xi1 = 1) > E(xi2|xi1 = 0)

� xi includes the full set of relevant characteristics. More specifically, peer disruptive

behavior is the only relevant characteristic:

h
(
x,
{
x1, . . . ,xn−1

})
= ω0 + ω1x̄i2

� Researcher A estimates a regression of yi on own and peer gender (xi1, x̄i1).

� Researcher B estimates a regression of yi on own and peer gender and disruptive

behavior (xi, x̄i).

Researcher A will not recover the correct model of h(·), but will still recover average and

conditional peer effects for peer gender, and can make predictions about the consequences
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of a feasible reallocation by peer gender. In contrast, Researcher B will recover the correct

model of h(·), and will correctly conclude that peer gender does not matter once one

accounts for peer disruptive behavior. However, this does not mean that a reallocation

across classrooms by gender will have no effect. Behavior varies by gender, so any

change in gender composition may also change the rate of disruptive peer behavior.

In the absence of information on the magintude of this indirect effect, Researcher B’s

results may actually be less informative than Researcher A’s on the consequences of a

reallocation by gender.

8 Conclusion

This paper has established a simple framework for thinking about contextual effects,

clarifying common empirical procedures in the context of this framework, and suggesting

simple and easily-implemented enhancements to those procedures. The extensions show

that the framework can usefully be applied to a wide variety of settings and applications.

Taken as a whole, the results have several implications for empirical research on

contextual peer effects, and on their potential application to policy.

The first implication is that simple model specifications based on categorical ex-

planatory variables will often be more informative than “kitchen sink” regressions that

attempt to incorporate every potentially relevant peer characteristic available in the

data. A simple specification that uses a single binary peer characteristic (high/low

income, black/white, male/female, etc.) can be interpreted as measuring the difference

in conditional or average peer effects across the two categories under relatively weak

assumptions. In constrast, a regression with many related peer characteristics is difficult

to interpret without imposing the very strong assumptions needed to identify direct

contextual effects and considering in detail the relationship between these characteristics.

A second implication is that researchers can estimate multiple distinct regression

models, with each providing information on a different comparison. This is particularly

relevant in a literature heavily focused on estimating a variety of specifications using a

few key data sets such as the Add Health survey or the longitudinal student records

of those few U.S. states and Canadian provinces that make such data available. For

example, one researcher might estimate a regression with peer parental income as the

explanatory variable, while another estimates a similar regression with the same data

using peer parental education as the explanatory variable. If the researchers’ goal is

to measure direct contextual effects, at least one of these models is misspecified. In

contrast, if the researchers’ goal is to measure how conditional or average peer effects
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vary across identifiable groups, each of these models is informative and any apparent

conflict between their results can be reconciled by estimating a third regression that

includes both peer variables and their interaction.

A third implication is that the dimension and mechanism of randomization is

important in ways that are not often appreciated. For example, average peer effects

describe the effect of replacing a randomly selected peer from one category with a

randomly selected peer from another category. This corresponds to the precise effect

of replacing any peer from one category with any peer from the other category only

if peer effects are homogeneous within categories, i.e., the researcher has estimated

a direct contextual effect. Similarly, a research design based on random cohorts

(groups) nested within non-randomly assigned schools (locations) typically identifies

only the consequences of a reallocation within the school (location). Highly restrictive

homogeneity assumptions are required to identify the consequences of reallocations

across schools.

The results in this paper emphasize a clearer understanding of simple models

and standard estimation methods rather than the development of novel or elaborate

methods. Simple models and methods are central to empirical research and merit

substantial attention. However, the framework developed here provides several clear

avenues for further research that develops and applies novel econometric methods with

empirical data. For example, the methods described here assume the researcher has

predetermined a small set of discrete characteristics to use as conditioning variables. In

applications where the available characteristics are continuous and/or high-dimensional,

researchers may be interested in pursuing a more data-driven exploration of peer group

heterogeneity. Recent advances in the use of machine learning and other tools for

systematically analyzing treatment effect heterogeneity (Wager and Athey, 2018) may

be adapted to this setting, and open up the possibility of identifying robust predictors of

peer and group effects from limited data. Another potential avenue of further research

is a more detailed application of heterogeneous coefficients methods to measuring peer

effects in location-based designs.
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Not-for-publication Appendix

Proof for Proposition 1

1. Each result can be derived from the definition. For average peer effects:

APEk = E
(
yi({j} ∪ p̃)− yi(

{
j′
}
∪ p̃)

∣∣xj = ek,xj′ = e0
)

(definition)

=
K∑
c=0

E

yi({j} ∪ p̃)− yi(
{
j′
}
∪ p̃)

∣∣∣∣∣∣xi = ec,

xj = ek,xj′ = e0

Pr(xi = ec|xj = ek,xj′ = e0)

=

K∑
c=0

E

yi({j} ∪ p̃)− yi(
{
j′
}
∪ p̃)

∣∣∣∣∣∣xi = ec,

xj = ek,xj′ = e0

Pr(xi = ec)

(since τi ⊥⊥ τj , τj′)

=
K∑
c=0

µcCPEck

For average group effects:

AGEb = E(yi(p̃)|zi(p̃) = eb)− E(yi(p̃)|zi(p̃) = e0) (definition)

=
K∑
c=0

E (yi(p̃) |xi = ec, zi(p̃) = eb ) Pr (xi = ec|zi(p̃) = eb)

−
K∑
c=0

E (yi(p̃) |xi = ec, zi(p̃) = e0 ) Pr (xi = ec|zi(p̃) = e0)

=
K∑
c=0

E
yi(p̃)

∣∣∣∣∣∣xi = ec,

zi(p̃) = eb

− E

yi(p̃)
∣∣∣∣∣∣xi = ec,

zi(p̃) = e0

Pr (xi = ec)

(since τi ⊥⊥ {τj}j ̸=i , p̃)

=

K∑
c=0

µcCGEcb
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2. For any c, b:

E

yi(p̃)
∣∣∣∣∣∣ xi = ec,

zi(p̃) = eb

 =
A∑

a=0

E

yi(p̃)
∣∣∣∣∣∣ xi = ec,

z∗i (p̃) = ea

Pr

z∗i (p̃) = ea

∣∣∣∣∣∣ xi = ec,

zi(p̃) = eb


= E

yi(p̃)
∣∣∣∣∣∣ xi = ec,

z∗i (p̃) = e0

Pr(z∗i (p̃) = e0|zi(p̃) = eb)

+

A∑
a=1

E

yi(p̃)
∣∣∣∣∣∣ xi = ec,

z∗i (p̃) = ea

Pr(z∗i (p̃) = ea|zi(p̃) = eb)

= E

yi(p̃)
∣∣∣∣∣∣ xi = ec,

z∗i (p̃) = e0

(1− A∑
a=1

Pr(z∗i (p̃) = ea|zi(p̃) = eb)

)

+
A∑

a=1

E

yi(p̃)
∣∣∣∣∣∣ xi = ec,

z∗i (p̃) = ea

Pr(z∗i (p̃) = ea|zi(p̃) = eb)

= E

yi(p̃)
∣∣∣∣∣∣ xi = ec,

z∗i (p̃) = e0

+
A∑

a=1

CGE∗
ca Pr(z

∗
i (p̃) = ea|zi(p̃) = eb)

(92)

Substituting result (92) into the definition of CGEcb produces:

CGEcb = E

yi(p̃)
∣∣∣∣∣∣ xi = ec,

zi(p̃) = eb

− E

yi(p̃)
∣∣∣∣∣∣ xi = ec,

zi(p̃) = e0


(definition of CGEcb)

=

E
yi(p̃)

∣∣∣∣∣∣ xi = ec,

z∗i (p̃) = e0

+
A∑

a=1

CGE∗
ca Pr (z

∗
i (p̃) = ea |zi(p̃) = eb )


−

E
yi(p̃)

∣∣∣∣∣∣ xi = ec,

z∗i (p̃) = e0

+
A∑

a=1

CGE∗
ca Pr(z

∗
i (p̃) = ea|zi(p̃) = e0)


(by (92))

=
A∑

a=1

CGE∗
ca

 Pr(z∗i (p̃) = ea|zi(p̃) = eb)

−Pr(z∗i (p̃) = ea|zi(p̃) = e0)

 (93)
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For any (a, b):

Pr(z∗i (p̃) = ea|zi(p̃) = eb) =
Pr(zi(p̃) = eb ∩ z∗i (p̃) = ea)

Pr(zi(p̃) = eb))
(94)

=

∑
x̄∈Sb

x̄:z
∗(x̄)=ea

Pr(x̄i(p̃) = x̄)∑
x̄∈Sb

x̄
Pr(x̄i(p̃) = x̄)

(95)

By construction, the vector (n− 1)x̄i(p̃) is a random draw from the multinomial

distribution:

Pr(x̄i(p̃) = x̄) = M(x̄, n, µ) (96)

The result then follows by substitution.

Proof for Proposition 2

1. Let:

PE(τi, τj) ≡ y(τi, {τj , 1, 1, . . . , 1})−
(
n− 2

n− 1

)
y(τi, {1, 1, 1, . . . , 1}) (97)

where unobserved type 1 has been chosen as an arbitrary reference type. Then:

∑
j∈p

PEij =
∑
j∈p

y(τi, {τj , 1, 1, . . . , 1})−
(
n− 2

n− 1

)
y(τi, {1, 1, 1, . . . , 1}) (by (97))

=

∑
j∈p

y(τi, {τj , 1, 1, . . . , 1})

− (n− 2) y(τi, {1, 1, 1, . . . , 1})

= y(τi, {1, 1, . . . , 1}) +
∑
j∈p

(y(τi, {τj , 1, 1, . . . , 1})− y(τi, {1, 1, 1, . . . , 1}))
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Expanding out this sum yields:∑
j∈p

PEij = y(τi, {1, 1, . . . , 1})

+ y(τi,
{
τp(1), 1, 1, . . . , 1

}
)− y(τi, {1, 1, 1, . . . , 1})

+ y(τi,
{
1, τp(2), 1, . . . , 1

}
)− y(τi, {1, 1, 1, . . . , 1})

...

+ y(τi,
{
1, 1, . . . , τp(n−1)

}
)− y(τi, {1, 1, 1, . . . , 1})

= y(τi, {1, 1, . . . , 1})

+ y(τi,
{
τp(1), τp(2), τp(3), . . . , τp(n−1)

}
)− y(τi,

{
1, τp(2), τp(3), . . . , τp(n−1)

}
)

+ y(τi,
{
1, τp(2), τp(3), . . . , τp(n−1)

}
)− y(τi,

{
1, 1, τp(3), . . . , τp(n−1)

}
)

...

+ y(τi,
{
1, 1, . . . , 1, τp(n−2), τp(n−1)

}
)− y(τi,

{
1, 1, . . . , 1, τp(n−1)

}
)

+ y(τi,
{
1, 1, . . . , 1, τp(n−1)

}
)− y(τi, {1, 1, . . . , 1})

(by PS)

= y(τi,
{
τp(1), τp(2), τp(3), . . . , τp(n−1)

}
)

= yi(p)

which is result (24). To prove results (25) and (26), first note that (τi, τj) ⊥⊥ τj′

by equation (5), so:

(PEij ,xi,xj) ⊥⊥ xj′ (98)
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Then:

CPEck = E
(
yi({j} ∪ q̃)− yi(

{
j′
}
∪ q̃)

∣∣xi = ec,xj = ek,xj′ = e0
)

(definition of CPEck)

= E


PEij +

∑
j′′∈q̃

PEij′′

−

PEij′ +
∑
j′′∈q̃

PEij′′

∣∣∣∣∣∣
xi = ec,

xj = ek,

xj′ = e0


(by (24))

= E
(
PEij − PEij′

∣∣xi = ec,xj = ek,xj′ = e0
)

= E
(
PEij |xi = ec,xj = ek,xj′ = e0

)
− E

(
PEij′

∣∣xi = ec,xj = ek,xj′ = e0
)

= E
(
PEij |xi = ec,xj = ek,xj′ = e0

)
− E

(
PEij |xi = ec,xj′ = ek,xj = e0

)
= E (PEij |xi = ec,xj = ek)− E (PEij |xi = ec,xj = e0) (by (98))

which is the result in (25) and:

APEk = E
(
yi({j} ∪ q̃)− yi(

{
j′
}
∪ q̃)

∣∣xj = ek,xj′ = e0
)
(definition of APEk)

= E

PEij +
∑
j′′∈q̃

PEij′′

−

PEij′ +
∑
j′′∈q̃

PEij′′

∣∣∣∣∣∣xj = ek,

xj′ = e0


(by (24))

= E
(
PEij − PEij′

∣∣xj = ek,xj′ = e0
)

= E
(
PEij |xj = ek,xj′ = e0

)
− E

(
PEij′

∣∣xj = ek,xj′ = e0
)

= E
(
PEij |xj = ek,xj′ = e0

)
− E

(
PEij |xj′ = ek,xj = e0

)
= E (PEij |xj = ek)− E (PEij |xj = e0) (by (98))

which is the result in (26).

2. Let PEj ≡ y(1, {τj , 1, 1, . . . , 1})−y(1, {1, 1, 1, . . . , 1}), and letOEi ≡ y(τi, {1, 1, 1, . . . , 1}).
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Then for any i:

PEij =

(
y(τi, {τj , 1, 1, . . . , 1})−

(
n− 2

n− 1

)
y(τi, {1, 1, 1, . . . , 1})

)
(by (97))

=
y(τi, {1, 1, 1, . . . , 1})

n− 1
+ y(τi, {τj , 1, 1, . . . , 1})− y(τi, {1, 1, 1, . . . , 1})

=
y(τi, {1, 1, 1, . . . , 1})

n− 1
+ y(1, {τj , 1, 1, . . . , 1})− y(1, {1, 1, 1, . . . , 1})

(by OS)

=
OEi

n− 1
+ PEj (99)

Substituting the result in (99) into (24) yields the result in (27). Substituting

that same result into (25) and (26) yields:

APEk = E(PEij |xj = ek)− E(PEij |xj = e0) (by (26))

= E

(
OEi

n− 1
+ PEj

∣∣∣∣xj = ek

)
− E

(
OEi

n− 1
+ PEj

∣∣∣∣xj = e0

)
(by (99))

= E(PEj |xj = ek)− E(PEj |xj = e0) +
E (OEi|xj = ek)− E (OEi|xj = e0)

n− 1

= E(PEj |xj = ek)− E(PEj |xj = e0) +
E (OEi)− E (OEi)

n− 1

(by (5) =⇒ OEi ⊥⊥ xj)

= E(PEj |xj = ek)− E(PEj |xj = e0)

CPEck = E(PEij |xi = ec,xj = ek)− E(PEij |xi = ec,xj = e0) (by (25))

= E

(
OEi

n− 1
+ PEj

∣∣∣∣xi = ec,xj = ek

)
− E

(
OEi

n− 1
+ PEj

∣∣∣∣xi = ec,xj = e0

)
(by (99))

= E (PEj |xi = ec,xj = ek)− E (PEj |xi = ec,xj = e0)

+
E (OEi|xi = ec,xj = ek)− E (OEi|xi = ec,xj = e0)

n− 1

(100)

= E (PEj |xj = ek)− E (PEj |xj = e0) +
E (OEi|xi = ec)− E (OEi|xi = ec)

n− 1

(by (5) =⇒ (xi, OEi) ⊥⊥ (xj , PEj))

= E(PEj |xj = ek)− E(PEj |xj = e0)

= APEk

which is the result in (28).
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Proof for Proposition 3

1. Let G̃ be a purely random group assignment and let p̃i = p(i, G̃). Since Y(·)
satisfies (PS) and G̃ satisfies (RA), Part 1 of Proposition 4 applies to the joint

distribution of counterfactual outcomes (Y(G̃),X, X̄(X, G̃)). Since G satisfies

(CRA), Lemma 1 applies to the joint distribution of actual outcomes (Y,X, X̄).

Let the vector of best linear predictor coefficients ζ be defined as in equation (103)

of the proof for Proposition 4. Then:

E(yi|xi = x, x̄i = x̄) = E(yi(p̃i)|xi = x, x̄i(p̃i) = x̄) (by (39) in Lemma 1)

= ζ0(n− 1) + xζ1(n− 1) + x̄ζ2(n− 1) + xζ3(n− 1)x̄′

(by (106) in the proof for Proposition 4)

Applying the law of iterated projections:

L(yi|xi, x̄i,x
′
ix̄i) = L(E(yi|xi, x̄i)|xi, x̄i,x

′
ix̄i) (law of iterated projections)

= L

ζ0(n− 1) + xiζ1(n− 1)

+ x̄iζ2(n− 1) + xiζ3(n− 1)x̄′
i

∣∣∣∣∣∣xi, x̄i,x
′
ix̄i


(result above)

= (η0 + ζ0(n− 1)) + xi(η1 + ζ1(n− 1))

+ x̄iζ2(n− 1) + xiζ3(n− 1)x̄′
i

(101)

L(yi|xi, x̄i,x
′
ix̄i, zi) = L(E(yi|xi, x̄i)|xi, x̄i,x

′
ix̄i, zi)

(law of iterated projections)

= L

ζ0(n− 1) + xiζ1(n− 1)

+ x̄iζ2(n− 1) + xiζ3(n− 1)x̄′
i

∣∣∣∣∣∣xi, x̄i,

x′
ix̄i, zi


(result above)

= ζ0(n− 1) + xiζ1(n− 1)

+ x̄iζ2(n− 1) + xiζ3(n− 1)x̄′
i

(102)

= L(yi|xi, x̄i,x
′
ix̄i) (by (101) and (102))

which is result (29).

2. The assumptions here (PS, OS, CRA) imply that all results in Propositions 2
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and 5 apply. Therefore:

APEk = CPEck for all c (by (28) in Proposition 2)

=
β2k + β3ck
n− 1

(by (41) in Proposition 5)

which can only be true if β3ck = β30k = 0 for all c, k.

Proof for Proposition 4

1. By (PS), Part 1 of Proposition 2 applies. Let ζ ≡ (ζ1, ζ2, ζ3) satisfy:

E(PEij |xi = ec,xj = ek) = ζ0 + ecζ1 + ekζ2 + ecζ3e
′
k (103)

The linear functional form in (103) is without loss of generality since x is categorical.

The estimand CPEck can be expressed as a function of ζ:

CPEck = E(PEij |xi = ec,xj = ek)

− E(PEij |xi = ec,xj = e0)

(PS =⇒ (26) in Proposition 2)

=
(
ζ0 + ecζ1 + ekζ2 + ecζ3e

′
k

)
−
(
ζ0 + ecζ1 + e0ζ2 + ecζ3e

′
0

) (by (103))

=
(
ζ0 + ecζ1 + ekζ2 + ecζ3e

′
k

)
− (ζ0 + ecζ1) (since e0 = 0)

= ekζ2 + ecζ3e
′
k

= ζ2k + ζ3ck (104)
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The next step is to show the relationship between the coefficients in ζ and the

coefficients in β:

E(yi|X,G) = E

∑
j∈pi

PEij

∣∣∣∣∣∣X,G
 (PS =⇒ (24) in Proposition 2)

= E

 I∑
j=1

PEijI (j ∈ pi)

∣∣∣∣∣∣X,G


(where I (·) is the indicator function)

=

I∑
j=1

E(PEij |X,G)I (j ∈ pi) (since I (j ∈ pi) is a function of G)

=
∑
j∈pi

E(PEij |X,G)

=
∑
j∈pi

E(PEij |X) (RA =⇒ (PEij ,X) ⊥⊥ (G,pi))

=
∑
j∈pi

E(PEij |xi,xj) (since (5) =⇒ (τi, τj) ⊥⊥ τj′)

=
∑
j∈pi

(ζ0 + xiζ1 + xjζ2 + xiζ3x
′
j) (by (103))

= ζ0(n− 1) + xiζ1(n− 1) + x̄iζ2(n− 1) + xiζ3(n− 1)x̄′
i (105)

Applying the law of iterated expectations to this result:

E(yi|xi = x, x̄i = x̄) = E(E(yi|X,G)|xi = x, x̄i = x̄)

(law of iterated expectations)

= E

ζ0(n− 1) + xiζ1(n− 1)

+ x̄iζ2(n− 1) + xiζ3(n− 1)x̄′
i

∣∣∣∣∣∣xi = x,

x̄i = x̄


(by (105))

= ζ0(n− 1) + xζ1(n− 1) + x̄ζ2(n− 1) + xζ3(n− 1)x̄′

(106)
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Applying the law of iterated projections to this result:

L(yi|xi, x̄i,xix̄
′
i) = L(E(yi|xi, x̄i)|xi, x̄i,xix̄

′
i) (law of iterated projections)

= L

ζ0(n− 1) + xiζ1(n− 1)

+ x̄iζ2(n− 1) + xiζ3(n− 1)x̄′
i

∣∣∣∣∣∣xi, x̄i,xix̄
′
i

 (by (106))

= ζ0(n− 1)︸ ︷︷ ︸
β0

+xi ζ1(n− 1)︸ ︷︷ ︸
β1

+x̄i ζ2(n− 1)︸ ︷︷ ︸
β2

+xi ζ3(n− 1)︸ ︷︷ ︸
β3

x̄′
i (107)

So β2 = ζ2(n− 1), β3 = ζ3(n− 1) and:

CPEc,k = ζ2k + ζ3ck (by (104))

=
β2k + β3ck
n− 1

(by (107))

which is result (32). To get result (31), first note that:

E(PEij |xj = x) = E(E(PEij |xi,xj)|xj = x) (law of iterated expectations)

= E(ζ0 + xiζ1 + xjζ2 + xiζ3x
′
j |xj = x) (by (103))

= ζ0 + E(xi|xj = x)ζ1 + xζ2 + E(xi|xj = x)ζ3x
′

(conditioning rule)

= ζ0 + E(xi)ζ1 + xζ2 + E(xi)ζ3x
′ (since (5) =⇒ xi ⊥⊥ xj)

= (ζ0 + E(xi)) ζ1 + x
(
ζ2 + ζ ′3E(x′

i)
)

(108)

Equation (26) from Proposition 2 implies:

APEk = E(PEij |xj = ek)− E(PEij |xj = e0) (PS =⇒ (26) in Proposition 2)

=
(
(ζ0 + E(xi)ζ1) + ek

(
ζ2 + ζ ′3E(x′

i)
))

−
(
(ζ0 + E(xi)ζ1) + e0

(
ζ2 + ζ ′3E(x′

i)
)) (by (108))

=
(
(ζ0 + E(xi)ζ1) + ek

(
ζ2 + ζ ′3E(x′

i)
))

− ((ζ0 + E(xi)ζ1))

(since e0 = 0)

= ek
(
ζ2 + ζ ′3E(x′

i)
)

(109)
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Assumption (RA) implies that xi ⊥⊥ x̄i, so:

L(yi|x̄i) = L(L(yi|xi, x̄i)|x̄i) (law of iterated projections)

= L(α0 + xiα1 + x̄iα2|x̄i) (definition of α)

= α0 + L(xi|x̄i)α1 + x̄iα2

= (α0 + E(xi)α1) + x̄iα2 (RA =⇒ xi ⊥⊥ x̄i)

Having expressed L(yi|x̄i) in terms of the the coefficients in α, it can also be

expressed in terms of the coefficients in ζ:

L(yi|x̄i) = L(L(yi|xi, x̄i,x
′
ix̄i)|x̄i) (law of iterated projections)

= L

ζ0(n− 1) + xiζ1(n− 1)

+ x̄iζ2(n− 1) + xiζ3(n− 1)x̄′
i

∣∣∣∣∣∣ x̄i

 (by (107))

= ζ0(n− 1) + L(xi|x̄i)ζ1(n− 1)

+ x̄iζ2(n− 1) + L(xiζ3(n− 1)x̄′
i|x̄i)

(property of linear projection)

= ζ0(n− 1) + E(xi)ζ1(n− 1)

+ x̄iζ2(n− 1) + E(xi)ζ3(n− 1)x̄′
i

(RA =⇒ xi ⊥⊥ x̄i)

= ζ0(n− 1) + E(xi)ζ1(n− 1)︸ ︷︷ ︸
α0+E(xi)α1

+x̄i (ζ2(n− 1) + ζ ′3E(x′
i)(n− 1))︸ ︷︷ ︸

α2

(110)

So α2 = (ζ2(n− 1) + ζ ′3E(x′
i)(n− 1)) and:

APEk = ek
(
ζ2 + ζ ′3E(x′

i)
)

(by (109))

= ek
α2

n− 1
(by (110))

=
α2k

n− 1

which is the result in (31).

2. Let p̃ be a purely random draw of (n− 1) peers from I \ {i}. By (RA), the actual

peer group pi is also a purely random draw from this set, so its joint distribution
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with (yi(·),X) is identical to the joint distribution of p̃ with (yi(·),X). Then:

CGEcb = E(yi(p̃)|xi = ec, zi(p̃) = eb)− E(yi(p̃)|xi = ec, zi(p̃) = e0) (by (17))

= E(yi(pi)|xi = ec, zi(pi) = eb)− E(yi(pi)|xi = ec, zi(pi) = e0)

(RA =⇒ same joint distribution)

= E(yi|xi = ec, zi = eb)− E(yi|xi = ec, zi = e0) (111)

Since xi and zi are categorical, E(yi|xi, zi) is trivially linear in (xi, zi,x
′
izi).

Therefore:

E(yi|xi, zi) = L(yi|xi, zi,x
′
izi)

= δ0 + xiδ1 + ziδ2 + xiδ3z
′
i (by (38))

Combining these two results produces:

CGEcb = E(yi|xi = ec, zi = eb)− E(yi|xi = ec, zi = e0) (by (111))

=
(
δ0 + ecδ1 + ebδ2 + ecδ3e

′
b

)
−
(
δ0 + ecδ1 + e0δ2 + ecδ3e

′
0

)
(result above)

=
(
δ0 + ecδ1 + ebδ2 + ecδ3e

′
b

)
− (δ0 + ecδ1) (since e0 = 0)

= ebδ2 + ecδ3e
′
b

= δ2b + δ3cb

which is result (36). Result (35) can be established by similar reasoning:

AGEb = E(yi(p̃)|zi(p̃) = eb)− E(yi(p̃)|zi(p̃) = e0) (by (16))

= E(yi(pi)|zi(pi) = eb)− E(yi(pi)|zi(pi) = e0)

(RA =⇒ same joint distribution)

= E(yi|zi = eb)− E(yi|zi = e0) (112)
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Since zi is categorical, E(yi|zi) is trivially linear in zi. Therefore:

E(yi|zi) = L(yi|zi)

= L(L(yi|xi, zi)|zi) (law of iterated projections)

= L(γ0 + xiγ1 + ziγ2|zi) (by (37))

= γ0 + L(xi|zi)γ1 + ziγ2

= γ0 + E(xi)γ1 + ziγ2 (RA =⇒ xi ⊥⊥ zi)

Combining these two results:

AGEb = E(yi|zi = eb)− E(yi|zi = e0) (by (112))

= (γ0 + E(xi)γ1 + ebγ2)− (γ0 + E(xi)γ1 + e0γ2) (result above)

= (γ0 + E(xi)γ1 + ebγ2)− (γ0 + E(xi)γ1) (since e0 = 0)

= ebγ2

= γ2b

which is result (35).

Proof for Lemma 1

Choose any GA ∈ GI
n and XA ∈ RI×K . Let gA

i ≡ (i,p(i,GA)) be an n-vector

identifying all individuals in group gi including individual i, and for any matrix M and
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vector v let [M]v be the submatrix constructed from rows v in matrix M. Then:

E(yi|X = XA,G = GA) = E(y(τi, {τj}j∈p(i,G))|X = XA,G = GA)

= E(y(τi, {τj}j∈p(i,GA))|X = XA,G = GA)

(conditioning rule)

= E(y(τi, {τj}j∈p(i,GA))|X = XA) (by CRA)

=
∑

TA∈T n

y(TA) Pr([T]gA
i
= TA|X = XA)

=
∑

TA∈T n

y(TA)

n∏
j=1

Pr

(
[T][gA

i ]j
= [TA]j

∣∣∣∣ [X][gA
i ]j

= [XA][gA
i ]j

)
(since (τi,xi) ⊥⊥ (τj ,xj) for all i ̸= j)

=
∑

TA∈T n

y(TA)

n∏
j=1

fτ ([TA]j)I
(
x([TA]j) = [XA][gA

i ]j

)
∑

τ∈T fτ (τ)I
(
x(τ) = [XA][gA

i ]j

)
︸ ︷︷ ︸

≡ν(xi(XA),x̄i(XA,GA))

(113)

Note that the last step in equation (113) makes use of the fact that x̄i fully describes the

frequency distribution of characteristics {xj}j∈pi
, and that the ν(·) function depends

on the type distribution fτ (·) but not on the probability distribution of G other than

through the conditional random assignment condition.

Since equation (113) holds for any (XA,GA) we can also say that:

E(yi|xi = x, x̄i = x̄) = E(E(yi|X,G)|xi = x, x̄i = x̄) (law of iterated expectations)

= E(ν(xi(X), x̄i(X,G)|xi = x, x̄i = x̄) (by (113))

= ν(x, x̄) (114)

Since equation (114) holds with the same ν(·) function for any G that satisfies (CRA),

it also holds for purely random G, which implies result (39).

Proof for Proposition 5

Let G̃ be a purely random group assignment and let p̃i = p(i, G̃). Then:

1. Let β̃ ≡ (β̃0, β̃1, β̃2, β̃3) be the best linear predictor coefficients from the counter-
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factual regression model:

L(yi(p̃i)|xi, x̄i(p̃i),x
′
ix̄i(p̃i)) = β̃0 + xiβ̃1 + x̄i(p̃i)β̃2 + xiβ̃3x̄i(p̃i)

′ (115)

Since outcomes are peer-separable (PS) and G̃ satisfies (RA), Part 1 of Proposi-

tion 4 applies to the counterfactual outcomes:

CPEck =
β̃2k + β̃3ck
n− 1

(by (32) in Proposition 4)

In addition, the proof for Proposition 4 shows that the counterfactual CEF is

linear under these conditions:

E(yi(p̃i)|xi = x, x̄i(p̃i) = x̄) = L(yi(p̃i)|xi = x, x̄i(p̃i) = x̄,x′
ix̄i(p̃i) = x′x̄)

(by (107))

= β̃0 + xβ̃1 + x̄β̃2 + xβ̃3x̄
′ (116)

Since G satisfies (CRA), Lemma 1 applies, which also implies that the actual

CEF is linear:

E(yi|xi = x, x̄i = x̄) = E(yi(p̃i)|xi = x, x̄i(p̃i) = x̄) (by (39) in Lemma 1)

= β̃0 + xβ̃1 + x̄β̃2 + xβ̃3x̄
′ (117)

and β = β̃. Therefore:

CPEck =
β2k + β3ck
n− 1

(since β = β̃)

which is result (41). Result (40) follows from substitution of result (41) into result

(18).

2. Let λ̃ ≡ (λ̃0, λ̃1, λ̃2, λ̃3) be the best linear predictor coefficients from the counter-

factual regression model:

L(yi(p̃i)|xi, z
∗
i (p̃i),x

′
iz

∗
i (p̃i)) = λ̃0 + xiλ̃1 + z∗i (p̃i)λ̃2 + xiλ̃3z

∗
i (p̃i)

′ (118)

Since G̃ satisfies (RA), Part 2 of Proposition 4 applies to the counterfactual

outcomes:

CGE∗
ca = λ̃2a + λ̃3ca (by (111) in Proposition 4)
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The counterfactual CEF is linear since z∗(·) is saturated:

E(yi(p̃i)|xi = x, x̄i(p̃i) = x̄) = L(yi(p̃i)|xi, z
∗
i (p̃i),x

′
iz

∗
i (p̃i)) (119)

= λ̃0 + xλ̃1 + z∗(x̄)λ̃2 + xλ̃3z
∗(x̄)′ (120)

Since G satisfies (CRA), Lemma 1 applies, which implies that:

E(yi|xi = x, x̄i = x̄) = E(yi(p̃i)|xi = x, x̄i(p̃i) = x̄) (by (39) in Lemma 1)

= λ̃0 + xλ̃1 + z∗(x̄)λ̃2 + xλ̃3z
∗(x̄)′ (121)

and λ = λ̃. Therefore:

CGE∗
ca = λ2a + λ3ca (since λ = λ̃)

Result (43) then follows from substitution of this result into result (21). Result

(42) follows from substitution of result (43) into result (19).

Proof for Proposition 6

The result follows directly from the definitions:

ARE(GR) = E(yi(p(i,GR(X, ϵ)))− yi(p̃)) (definition of ARE)

=
K∑
c=0

E (yi(p(i,GR(X, ϵ)))− yi(p̃)|xi = ec) Pr (xi = ec)

=
K∑
c=0

µcCREc(GR) (definition of CRE and µ)

which is the result in (61).

Proof for Proposition 7

For convenience, let G̃R ≡ GR(X, ϵ) y
R
i ≡ yi(p(i, G̃R)), x̄R

i ≡ x̄(p(i, G̃R)), and

zRi ≡ z(x̄R
i ).

1. Since G̃R satisfies (CRA), Lemma 1 applies:

E(yRi |xi = x, x̄R
i = x̄) = E(yi(p̃)|xi = x, x̄i(p̃) = x̄) (by (39) in Lemma 1)

Pick any b > 0. By assumption, Sb
x̄ =

{
x̄b
}
is a singleton, and the events x̄R

i = x̄b
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and zRi = eb are identical. Therefore:

E(yRi |xi = ec, z
R
i = eb) = E(yRi |xi = ec, x̄

R
i = x̄b) (identical events)

= E(yi(p̃)|xi = ec, x̄i(p̃) = x̄b) (by Lemma 1)

= E(yi(p̃)|xi = ec, zi(p̃) = eb) (identical events)

= E(yi(p̃)|xi = ec, zi(p̃) = e0) + CGEcb (122)

Summing over all values of z:

E(yRi |xi = ec) =
B∑
b=0

E(yRi |xi = ec, z
R
i = eb) Pr(z

R
i = eb|xi = ec)

=

B∑
b=1

E(yRi |xi = ec, z
R
i = eb) Pr(z

R
i = eb|xi = ec)

(since Pr(x̄R
i ∈ S0

x̄) = 0)

=
B∑
b=1

(E(yi(p̃)|xi = ec, zi(p̃) = e0) + CGEcb) Pr(z
R
i = eb|xi = ec)

(by (122))

= E(yi(p̃)|xi = ec, zi(p̃) = e0)


B∑
b=1

Pr(zRi = eb|xi = ec)︸ ︷︷ ︸
1


+

B∑
b=1

CGEcb Pr(z
R
i = eb|xi = ec)

= E(yi(p̃)|xi = ec, zi(p̃) = e0) +
B∑
b=1

CGEcb Pr(z
R
i = eb|xi = ec)

(123)
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Similarly:

E(yi(p̃)|xi = ec) =
B∑
b=0

E(yi(p̃)|xi = ec, zi(p̃) = eb) Pr(zi(p̃) = eb|xi = ec)

= E(yi(p̃)|xi = ec, zi(p̃) = e0) Pr(zi(p̃) = e0|xi = ec)

+
B∑
b=1

E(yi(p̃)|xi = ec, zi(p̃) = eb) Pr(zi(p̃) = eb|xi = ec)

= E(yi(p̃)|xi = ec, zi(p̃) = e0) Pr(zi(p̃) = e0|xi = ec)

+
B∑
b=1

(E(yi(p̃)|xi = ec, zi(p̃) = e0) + CGEcb) Pr(zi(p̃) = eb|xi = ec)

(by (122))

= E(yi(p̃)|xi = ec, zi(p̃) = e0)


B∑
b=0

Pr(zi(p̃) = eb|xi = ec)︸ ︷︷ ︸
1


+

B∑
b=1

CGEcb Pr(zi(p̃) = eb|xi = ec)

= E(yi(p̃)|xi = ec, zi(p̃) = e0) +

B∑
b=1

CGEcb Pr(zi(p̃) = eb|xi = ec)

(124)

Combining these results yields:

CREc(GR) = E(yi(p(i,GR(X, ϵ)))− yi(p̃)|xi = ec) (definition of CRE)

= E(yRi |xi = ec)− E(yi(p̃)|xi = ec)

=

(
E(yi(p̃)|xi = ec, zi(p̃) = e0) +

B∑
b=1

CGEcb Pr(z
R
i = eb|xi = ec)

)

−

(
E(yi(p̃)|xi = ec, zi(p̃) = e0) +

B∑
b=1

CGEcb Pr(zi(p̃) = eb|xi = ec)

)
(by (123) and (124))

=

B∑
b=1

CGEcb

(
Pr(zRi = eb|xi = ec)− Pr(zi(p̃) = eb|xi = ec)

)
=

B∑
b=1

∆zcb(GR)CGEcb
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which is the result in (63). Result (62) follows by substituting (63) into result (61)

of Proposition 6.

2. Given (PS), part 1 of Proposition 2 applies:

E(yRi |X, G̃R) = E(yi(p(i, G̃R))|X, G̃R) (definition)

= E

 ∑
j∈p(i,G̃R)

PEij

∣∣∣∣∣∣X, G̃R

 (by Proposition 2)

=
∑

j∈p(i,G̃R)

E
(
PEij |X, G̃R

)
=

∑
j∈p(i,G̃R)

E
(
E(PEij |X, G̃R, ϵ)

∣∣∣X, G̃R

)
(law of iterated expectations)

=
∑

j∈p(i,G̃R)

E
(
E(PEij |X, ϵ)

∣∣∣X, G̃R

)
(since G̃R is a function of (X, ϵ))

=
∑

j∈p(i,G̃R)

E
(
E(PEij |X)

∣∣∣X, G̃R

)
(since ϵ ⊥⊥ T)

=
∑

j∈p(i,G̃R)

E
(
E(PEij |xi,xj)

∣∣∣X, G̃R

)
(since τi ⊥⊥ τj for i ̸= j)

=
∑

j∈p(i,G̃R)

E(PEij |xi,xj)

=
∑

j∈p(i,G̃R)

ζ0 + xiζ1 + xjζ2 + xiζ3x
′
j

(where ζ is defined as in (103))

= ζ0(n− 1) + xiζ1(n− 1) + x̄R
i ζ2(n− 1) + xiζ3(n− 1)x̄R′

i (125)

Averaging over values of x̄:

E(yRi |xi = x) = E(E(yRi |X, G̃R)|xi = x) (Law of iterated expectations)

= E

ζ0(n− 1) + xiζ1(n− 1)

+ x̄R
i ζ2(n− 1) + xiζ3(n− 1)x̄R′

i

∣∣∣∣∣∣xi = x

 (by (125))

= ζ0(n− 1) + xζ1(n− 1)

+ E(x̄R
i |xi = x)ζ2(n− 1) + xζ3(n− 1)E(x̄R

i |xi = x)′

(126)
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This result also applies when G̃R is purely random, so:

E(yi(p̃)|xi = x) = ζ0(n− 1) + xζ1(n− 1) + E(x̄i(p̃)|xi = x)ζ2(n− 1)

+ xζ3(n− 1)E(x̄i(p̃)|xi = x)′

(by (126))

= ζ0(n− 1) + xζ1(n− 1) + E(x̄i(p̃))ζ2(n− 1)

+ xζ3(n− 1)E(x̄i(p̃))
′

(RA =⇒ x̄i(p̃) ⊥⊥ xi)

= ζ0(n− 1) + xζ1(n− 1) + µζ2(n− 1) + xζ3(n− 1)µ′

Then

CREc(GR) = E(yRi − yi(p̃)|xi = ec)

=

ζ0(n− 1) + ecζ1(n− 1) + E(x̄R
i |xi = ec)ζ2(n− 1)

+ ecζ3(n− 1)E(x̄R
i |xi = ec)

′


−

ζ0(n− 1) + ecζ1(n− 1) + µζ2(n− 1)

+ ecζ3(n− 1)µ′


(by (126))

= E
(
x̄R
i |xi = ec)− µ

)
ζ2(n− 1) + ecζ3(n− 1)E

(
x̄R
i |xi = ec)− µ

)′
= (n− 1)

K∑
k=1

(
E(x̄Rik|xi = ec)− µk

)
(ζ2k + ζ3ck)

= (n− 1)
K∑
k=1

∆x̄ck(GR)CPEck

which is the result in (66). The result in (65) follows by applying the law of total

probability to (66).

3. Given (PS, OS), Part 2 of Proposition 2 applies. By equation (28) in Proposition 2,

CPEck = APEk and so result (69) follows from (66) by substitution. Result

(68) follows from the fact that individual and peer characteristics have the same
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expected value in any feasible reallocation:

K∑
c=0

∆x̄ck(GR)µc =
K∑
c=0

(
E(x̄Rik|xi = ec)− µk

)
µc (definition of ∆x̄)

=
K∑
c=0

E(x̄Rik|xi = ec) Pr(xi = ec)− E(xik)
K∑
c=0

Pr(xi = ec)

(definition of µ)

= E(x̄Rik)− E(xik) (law of total probability)

= 0 (127)

Therefore:

ARE(GR) = (n− 1)

K∑
c=0

K∑
k=1

µc∆x̄ck(GR)CPEck (by (65))

= (n− 1)

K∑
c=0

K∑
k=1

µc∆x̄ck(GR)APEk (by (28) in Proposition 2)

= (n− 1)
K∑
k=1

APEk

K∑
c=0

∆x̄ck(GR)µc︸ ︷︷ ︸
=0 by (127)

= 0

which is the result in (68).
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Proof for Proposition 8

Given (OS,PS), Part 2 of Proposition 2 applies, and we can express each outcome yi as

a sum of own effects OEi and peer effects PEj . We can also show that:

E

PEij

∣∣∣∣∣∣xi = ec,xj = ek,

ℓi = ℓ, ℓj = ℓ′

 = E

(
OEi

n− 1
+ PEj

∣∣∣∣xi = ec,xj = ek, ℓi = ℓ, ℓj = ℓ′
)

(128)

=
E(OEi|xi = ec, ℓi = ℓ)

n− 1
+ E(PEj |xj = ek, ℓj = ℓ′)

(129)

E

PEij

∣∣∣∣∣∣xi = ec,xj = ek,

ℓi = ℓ

 = E

(
OEi

n− 1
+ PEj

∣∣∣∣xi = ec,xj = ek, ℓi = ℓ

)
(130)

=
E(OEi|xi = ec, ℓi = ℓ)

n− 1
+ E(PEj |xj = ek) (131)

Let ζ ≡ (ζ0, ζ1) such that:

E(PEj |xj) = ζ0 + xjζ1 (132)

and let ηℓ ≡ (ηℓ0, η
ℓ
1) and η ≡ (η0, η1) such that:

E(OEi|xi, ℓi = ℓ) = ηℓ0 + xiη
ℓ
1 (133)

E(OEi|xi) = η0 + xiη1 (134)

Substitiuting (129) and (131) into the definition of location invariance (LI) produces

the implication that:

E(PEj |xj = ek, ℓj = ℓ′) = E(PEj |xj = ek) (135)

= ζ0 + xjζ1 (136)

Constant shifts (CS) implies that ηℓ1 does not vary across locations:

ηℓ1k = E(OEi|xi = ek, ℓi = ℓ)− E(OEi|xi = e0, ℓi = ℓ)

= E(OEi|xi = ek)− E(OEi|xi = e0) (by CS)

= η1k
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implying that:

E(OEi|xi, ℓi = ℓ) = ηℓ0 + xiη1 (137)

Substituting these results into equation (27) from Part 2 of Proposition 2:

E(yi|X,G,L) = E

OEi +
∑
j∈pi

PEj

∣∣∣∣∣∣X,G,L
 (by (27))

= E (OEi |X,G,L) +
∑
j∈pi

E (PEj |X,G,L)

= E (OEi |xi, ℓi ) +
∑
j∈pi

E (PEj |xj , ℓj ) (by RAL)

= E (OEi |xi, ℓi ) +
∑
j∈pi

E (PEj |xj ) (by LI)

= ηℓi0 + η1xi +
∑
j∈pi

(ζ0 + xjζ1) (by results above)

= (ηℓi0 + ζ0(n− 1)) + η1xi + x̄iζ1(n− 1) (138)

Applying the law of iterated expectations:

E(yi|xi = x, x̄i = x̄, ℓi = ℓ) = E(E(yi|X,G,L)|xi = x, x̄i = x̄, ℓi = ℓ) (by LIE)

= (ηℓ0 + ζ0(n− 1))︸ ︷︷ ︸
αℓ
0

+x η1︸︷︷︸
α1

+x̄ ζ1(n− 1)︸ ︷︷ ︸
α2

(139)

Finally, result (28) in Part 2 of Proposition 2 implies:

CPEck = APEk = E(PEi|xi = ek)− E(PEi|xi = e0) (by (28))

= ζ1k (by (132))

= α2k/(n− 1) (by (139))

which is the result in (77).

Proof for Proposition 9

1. The proof here is essentially the same as the proof for part two of Proposition 4,

but conditioning on ℓi. Given (PS), Proposition 2 implies the potential outcome

function can be written as in equation (24) and within-location peer effects can
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be written in terms of PEij :

CPEℓ
ck = E(PEij |xi = ec,xj = ek, ℓi = ℓj = ℓ)

− E(PEij |xi = ec,xj = e0, ℓi = ℓj = ℓ)

(140)

APEℓ
k = E(PEij |xj = ek, ℓi = ℓj = ℓ)− E(PEij |xj = e0, ℓi = ℓj = ℓ)

Without loss of generality, let ζℓℓ
′ ≡ (ζℓℓ

′
1 , ζℓℓ

′
2 , ζℓℓ

′
3 ) satisfy:

E(PEij |xi,xj , ℓi = ℓ, ℓj = ℓ′) = ζℓℓ
′

0 + xiζ
ℓℓ′
1 + xjζ

ℓℓ′
2 + xiζ

ℓℓ′
3 x′

j (141)

These two results can be combined to find CPEℓ
ck in terms of ζℓℓ:

CPEℓ
ck = E(PEij |xi = ec,xj = ek, ℓi = ℓj = ℓ)

− E(PEij |xi = ec,xj = e0, ℓi = ℓj = ℓ)

(by (140))

=
(
ζℓℓ0 + ecζ

ℓℓ
1 + ekζ

ℓℓ
2 + ecζ

ℓℓ
3 e′k

)
−
(
ζℓℓ0 + ecζ

ℓℓ
1 + e0ζ

ℓℓ
2 + ecζ

ℓℓ
3 e′0

) (by (141))

=
(
ζℓℓ0 + ecζ

ℓℓ
1 + ekζ

ℓℓ
2 + ecζ

ℓℓ
3 e′k

)
−
(
ζℓℓ0 + ecζ

ℓℓ
1

)
(since e0 = 0)

= ekζ
ℓℓ
2 + ecζ

ℓℓ
3 e′k

= ζℓℓ2k + ζℓℓ3ck (142)
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The next step is to find the relationship between ζℓℓ and βℓ by finding the best

linear predictor Lℓ(yi|xi, x̄i,x
′
ix̄i) in terms of ζℓℓ:

E(yi|X,G,L) = E

∑
j∈pi

PEij

∣∣∣∣∣∣X,G,L
 (by Proposition 2)

= E

 I∑
j=1

PEijI (j ∈ pi)

∣∣∣∣∣∣X,G,L


(where I () is the indicator function)

=
I∑

j=1

E(PEijI (j ∈ pi) |X,G,L)

=
I∑

j=1

E(PEij |X,G,L)I (j ∈ pi)

(since I (j ∈ pi) is a function of G)

=
∑
j∈pi

E(PEij |X,G,L)

=
∑
j∈pi

E(PEij |X,L) (RAL =⇒ T ⊥⊥ G|L)

=
∑
j∈pi

E(PEij |xi,xj , ℓi, ℓj = ℓi) (by (75))

=
∑
j∈pi

(
ζℓiℓi0 + xiζ

ℓiℓi
1 + xjζ

ℓiℓi
2 + xiζ

ℓiℓi
3 x′

j

)
(by (141))

= ζℓiℓi0 (n− 1) + xiζ
ℓiℓi
1 (n− 1) + x̄iζ

ℓiℓi
2 (n− 1) + xiζ

ℓiℓi
3 (n− 1)x̄′

i

(143)

Applying the law of iterated projections:

Lℓ

yi
∣∣∣∣∣∣xi, x̄i,

x′
ix̄i

 = Lℓ

E (yi|X,G,L)

∣∣∣∣∣∣xi, x̄i,

x′
ix̄i

 (law of iterated projections)

= Lℓ

ζℓi0 (n− 1) + xiζ
ℓiℓi
1 (n− 1)

+ x̄iζ
ℓiℓi
2 (n− 1) + xiζ

ℓiℓi
3 (n− 1)x̄′

i

∣∣∣∣∣∣xi, x̄i,

x′
ix̄i

 (by (143))

= ζℓℓ0 (n− 1)︸ ︷︷ ︸
βℓ
0

+xi ζ
ℓℓ
1 (n− 1)︸ ︷︷ ︸

βℓ
1

+x̄i ζ
ℓℓ
2 (n− 1)︸ ︷︷ ︸

βℓ
2

+xi ζ
ℓℓ
3 (n− 1)︸ ︷︷ ︸

βℓ
3

x̄′
i

(144)
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So βℓ2 = ζℓℓ2 (n− 1), βℓ3 = ζℓℓ3 (n− 1), and:

CPEℓ
ck = ζℓℓ2k + ζℓℓ3ck (by (142))

=
βℓ2k + βℓ3ck
n− 1

(by (144))

which is the result in (83). The same procedure can be used to derive the result

in (82). First, express APEℓ
k in terms of ζℓℓ:

APEℓ
k = E(PEij |xj = ek, ℓi = ℓj = ℓ)

− E(PEij |xj = e0, ℓi = ℓj = ℓ)

(by (140))

= E (E (PEij |xi,xj , ℓi = ℓj = ℓ)|xj = ek, ℓi = ℓj = ℓ)

− E (E (PEij |xi,xj , ℓi = ℓj = ℓ)|xj = e0, ℓi = ℓj = ℓ)

(law of iterated expectations)

= E
(
ζℓℓ0 + xiζ

ℓℓ
1 + xjζ

ℓℓ
2 + xiζ

ℓℓ
3 x′

j

∣∣∣xj = ek, ℓi = ℓj = ℓ
)

− E
(
ζℓℓ0 + xiζ

ℓℓ
1 + xjζ

ℓℓ
2 + xiζ

ℓℓ
3 x′

j

∣∣∣xj = e0, ℓi = ℓj = ℓ
) (by 141))

= ζℓℓ0 + E(xi|xj = ek, ℓi = ℓj = ℓ)ζℓℓ1

+ ekζ
ℓℓ
2 + E(xi|xj = ek, ℓi = ℓj = ℓ)ζℓℓ3 e′k

−
(
ζℓℓ0 + E(xi|xj = e0, ℓi = ℓj = ℓ)ζℓℓ1

)
(since e0 = 0)

= ζℓℓ0 + E(xi|ℓi = ℓj = ℓ)ζℓℓ1

+ ekζ
ℓℓ
2 + E(xi|ℓi = ℓj = ℓ)ζℓℓ3 e′k

−
(
ζℓℓ0 + E(xi|ℓi = ℓj = ℓ)ζℓℓ1

)
((75) =⇒ xi ⊥⊥ xj |L)

= ekζ
ℓℓ
2 + E(xi|ℓi = ℓ)ζℓℓ3 e′k

= ek

(
ζℓℓ2 + (ζℓℓ3 )′E(x′

i|ℓi = ℓ)
)

(145)
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Then find the relationship between αℓ and ζℓℓ by expressing Lℓ(yi|x̄i) in terms of

αℓ and in terms of ζℓℓ:

Lℓ(yi|x̄i) = Lℓ
(
Lℓ (yi|xi, x̄i)

∣∣∣ x̄i

)
(law of iterated projections)

= Lℓ
(
αℓ
0 + xiα

ℓ
1 + x̄iα

ℓ
2

∣∣∣ x̄i

)
(by (84))

= αℓ
0 + Lℓ(xi|x̄i)α

ℓ
1 + x̄iα

ℓ
2

= αℓ
0 + E(xi|ℓi = ℓ)αℓ

1 + x̄iα
ℓ
2 (by (75))

=
(
αℓ
0 + E(xi|ℓi = ℓ)αℓ

1

)
+ x̄iα

ℓ
2 (146)

Lℓ(yi|x̄i) = Lℓ (E (yi|X,G,L)| x̄i) (law of iterated projections)

= Lℓ

ζℓi0 (n− 1) + xiζ
ℓiℓi
1 (n− 1)

+ x̄iζ
ℓiℓi
2 (n− 1) + xiζ

ℓiℓi
3 (n− 1)x̄′

i

∣∣∣∣∣∣ x̄i

 (by (144))

= ζℓ0(n− 1) + Lℓ(xi|x̄i)ζ
ℓℓ
1 (n− 1)

+ x̄iζ
ℓℓ
2 (n− 1) + Lℓ(xi|x̄i)ζ

ℓℓ
3 (n− 1)x̄′

i

= ζℓ0(n− 1) + E(xi|ℓi = ℓ)ζℓℓ1 (n− 1)

+ x̄iζ
ℓℓ
2 (n− 1) + E(xi|ℓi = ℓ)ζℓℓ3 (n− 1)x̄′

i

(by (75))

= ζℓ0(n− 1) + E(xi|ℓi = ℓ)ζℓℓ1 (n− 1)︸ ︷︷ ︸
αℓ
0+E(xi|ℓi=ℓ)αℓ

1

+ x̄i

(
ζℓℓ2 (n− 1) + (ζℓℓ3 )′E(x′

i|ℓi = ℓ)(n− 1)
)

︸ ︷︷ ︸
αℓ
2

(147)

So αℓ
2 = (ζℓℓ2 (n− 1) + (ζℓℓ3 )′E(x′

i|ℓi = ℓ)(n− 1)) and:

APEℓ
k = ek(ζ

ℓℓ
2 + (ζℓℓ3 )′E(x′

i|ℓi = ℓ)) (by (145))

= ek
αℓ
2

n− 1
(by (146) and (147))

=
αℓ
2k

n− 1

which is the result in (82).

2. Given peer separability (PS), Proposition 2 implies the potential outcome function

can be written as in equation (24) and average and conditional peer effects can be

expressed in terms of the latent variable PEij . Location invariance (LI) implies
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that:

E

PEij

∣∣∣∣∣∣xi = ec,

xj = ek

 = E

E
PEij

∣∣∣∣∣∣xi = ec, ℓi, ℓj ,

xj = ek

∣∣∣∣∣∣xi = ec,

xj = ek

 (by LIE)

=
L∑

ℓ=1

L∑
ℓ′=1

E (PEij

∣∣xi = ec,xj = ek, ℓi = ℓ, ℓj = ℓ′
)

× Pr(ℓi = ℓ, ℓj = ℓ′|xi = ec,xj = ek)


(by LTP)

=
L∑

ℓ=1

L∑
ℓ′=1


E
(
PEij

∣∣xi = ec,xj = ek, ℓi = ℓ, ℓj = ℓ′
)

× Pr(ℓi = ℓ|xi = ec)

× Pr(ℓj = ℓ′|xj = ek)


(since i ⊥⊥ j)

=
L∑

ℓ=1

L∑
ℓ′=1


E (PEij |xi = ec,xj = ek, ℓi = ℓ)

× Pr(ℓi = ℓ|xi = ec)

× Pr(ℓj = ℓ′|xj = ek)

 (by (LI))

=
L∑

ℓ=1


E (PEij |xi = ec,xj = ek, ℓi = ℓ) Pr(ℓi = ℓ|xi = ec)

×
L∑

ℓ′=1

Pr(ℓj = ℓ′|xj = ek)︸ ︷︷ ︸
=1


=

L∑
ℓ=1

E (PEij |xi = ec,xj = ek, ℓi = ℓ) Pr(ℓi = ℓ|xi = ec)

(148)
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We can then substitute this result into result (25) in Proposition 2 to get:

CPEck = E (PEij |xi = ec,xj = ek)− E (PEij |xi = ec,xj = e0) (by (25))

=

L∑
ℓ=1

E (PEij |xi = ec,xj = ek, ℓi = ℓ) Pr(ℓi = ℓ|xi = ec)

−
L∑

ℓ=1

E (PEij |xi = ec,xj = e0, ℓi = ℓ) Pr(ℓi = ℓ|xi = ec)

(by (148))

=
L∑

ℓ=1

E (PEij |xi = ec,xj = ek, ℓi = ℓ)

− E (PEij |xi = ec,xj = e0, ℓi = ℓ)

Pr(ℓi = ℓ|xi = ec)

=
L∑

ℓ=1

E (PEij |xi = ec,xj = ek, ℓi = ℓj = ℓ)

− E (PEij |xi = ec,xj = e0, ℓi = ℓj = ℓ)

Pr(ℓi = ℓ|xi = ec)

(by (LI))

=

L∑
ℓ=1

CPEℓ
ck Pr(ℓi = ℓ|xi = ec) (by (140))

= E(CPEℓi
ck|xi = ec)

=
E(βℓi2k + βℓi3ck|xi = ec)

n− 1
(by (83))

which is the result in (87). Result (86) follows from substituition of (87) into (18).

3. Given (OS,PS), Part 2 of Proposition 2 applies, and we can express each outcome

yi as a sum of own effects OEi and peer effects PEj . Equations (129) and (131) in

the proof for Proposition 8 apply here as well, and we can substitute these results

into the definition of partial location invariance (PLI) to produce the implication

that:

E(PEj |xj = e0, ℓj = ℓ′) = E(PEj |xj = e0) (149)

For any k, the law of total probability implies that:

E(PEj |xj = ek) =

L∑
ℓ=1

E(PEj |xj = ek, ℓj = ℓ) Pr(ℓj = ℓ|xj = ek) (150)

69



In addition, we can derive:

E(PEj |xj = e0) = E(PEj |xj = e0)
L∑

ℓ=1

Pr(ℓj = ℓ|xj = ek)︸ ︷︷ ︸
=1

=
L∑

ℓ=1

E(PEj |xj = e0) Pr(ℓj = ℓ|xj = ek) (151)

Substituting in, we get:

APEk = E(PEj |xj = ek)− E(PEj |xj = e0) (by (28))

=
L∑

ℓ=1

E(PEj |xj = ek, ℓj = ℓ) Pr(ℓj = ℓ|xj = ek)

−
L∑

ℓ=1

E(PEj |xj = e0) Pr(ℓj = ℓ|xj = ek)

(by (150, 151))

=
L∑

ℓ=1

E(PEj |xj = ek, ℓj = ℓ) Pr(ℓj = ℓ|xj = ek)

−
L∑

ℓ=1

E(PEj |xj = e0, ℓj = ℓ) Pr(ℓj = ℓ|xj = ek)

(by (149))

=

L∑
ℓ=1

E(PEj |xj = ek, ℓj = ℓ)

− E(PEj |xj = e0, ℓj = ℓ)

Pr(ℓj = ℓ|xj = ek)

=

L∑
ℓ=1

APEℓ
k Pr(ℓj = ℓ|xj = ek) (by (28, 140))

= E(APEℓi
k |xi = ek)

=
E(αℓi

2k|xi = ek)

n− 1
(by (82))

which is the result in (88).

Proof for Proposition 10

1. Since x,x1, . . . ,xn−1 are categorical, x̄ fully describes
{
x1, . . . ,xn−1

}
and:

E
(
h(xi, {xj}j∈p)

∣∣∣xi = x, x̄i(p) = x̄
)
= h(x,

{
x1, . . . ,xn−1

}
) (152)
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for all p. Let p̃ be a purely random draw of (n− 1) peers from I \ {i}. Then:

(x∗
i , ui) ⊥⊥

{
x∗
j

}
j∈p̃ (153)

which implies:

E(ui|xi = x, x̄i(p̃) = x̄) = E(ui|xi = x) (by (153))

= 0 (154)

By (CRA), Lemma 1 holds and therefore:

E(yi|xi = x, x̄i = x̄) = E(yi(p̃)|xi = x, x̄i(p̃) = x̄) (by (39) in Lemma 1)

= E
(
h
(
xi, {xj}j∈p̃

)
+ ui

∣∣∣xi = x, x̄i(p̃) = x̄
)

(by DCE)

= E
(
h
(
xi, {xj}j∈p̃

)∣∣∣xi = x, x̄i(p̃) = x̄
)

+ E (ui|xi = x, x̄i(p̃) = x̄)

= E
(
h
(
xi, {xj}j∈p̃

)∣∣∣xi = x, x̄i(p̃) = x̄
)

(by (154))

= h
(
x,
{
x1, . . . ,xn−1

})
(by (152))

Since the left side of this equation is identified for all (x, x̄) on the support of

(xi, x̄i), so is the right side.

2. (PS) implies that result (24) in Proposition 2 holds, where:

PEij = y(τi, {τj , 1, 1, . . . , 1})−
n− 2

n− 1
y(τi, {1, 1, 1, . . . , 1}) (by (97))

= h(xi, {xj ,x(1), . . . ,x(1)}) + ui −
n− 2

n− 1
(h(xi, {x(1),x(1), . . . ,x(1)}) + ui)

(by DCE)

= h(xi, {xj ,x(1), . . . ,x(1)})−
n− 2

n− 1
h(xi, {x(1),x(1), . . . ,x(1)})︸ ︷︷ ︸

≡h2(xi,xj)

+
ui

n− 1

(155)
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It follows by substitution that:

E

PEij

∣∣∣∣∣∣xi = ec,xj = ek,

ℓi = ℓ, ℓj = ℓ′

 = E

h2(xi,xj) +
ui

n− 1

∣∣∣∣∣∣xi = ec,xj = ek,

ℓi = ℓ, ℓj = ℓ′


= h2(ec, ek) +

E(ui|xi = ec, ℓi = ℓ)

n− 1
(since i ⊥⊥ j)

E

PEij

∣∣∣∣∣∣xi = ec,xj = ek,

ℓi = ℓ

 = E

h2(xi,xj) +
ui

n− 1

∣∣∣∣∣∣xi = ec,xj = ek,

ℓi = ℓ


= h2(ec, ek) +

E(ui|xi = ec, ℓi = ℓ)

n− 1
(since i ⊥⊥ j)

which implies condition (LI). Therefore, Part 2 of Proposition 9 applies, and

results (87) and (86) in that proposition imply results (91) and (90) here.
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