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Abstract

This paper develops a general framework for interpreting linear regression estimates

of contextual peer effects under random peer assignment. Rather than imposing the

strong assumption that peers influence individual outcomes solely and directly through

specific observed characteristics, the model considers social interaction with a given

peer or group as a treatment with an unknown and variable treatment effect. In this

setting, a wide variety of conventional peer effect regressions are informative and can

be interpreted as measuring treatment effect heterogeneity along researcher-selected

dimensions of interest. These regressions can also be used to predict the consequences

of counterfactual peer group assignments. The relevance of the framework and results

to empirical research is illustrated using an application to measuring classroom peer

effects in Project STAR.

JEL codes: C21, C31
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1 Introduction

Researchers investigating social influences on choices or outcomes often employ a

behavioral model associated with1 Manski (1993) in which an individual’s outcome

∗Email: bkrauth@sfu.ca. Revisions available at bvkrauth.github.io/publication/peertreat
1In Manski (1993), behavior responds to the conditional expectation of peer behavior and characteristics,

but in most subsequent empirical work it is taken to respond to their observed values. Blume et al. (2011, p.
891-892) discuss this distinction and some of its implications.
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depends on outcomes (endogenous effects) and characteristics (contextual effects)

of others in some peer or reference group. Manski’s formulation has inspired the

development of methods for modeling endogenous effects and empirically distinguishing

them from both contextual effects and endogenous peer selection. These methods have

demanding data requirements, so applied researchers often estimate reduced form models

that contain only contextual effects. Despite their central role in empirical research, the

modeling of contextual effects has seen limited formal attention, resulting in a wide

variety of ad hoc model specifications whose causal interpretation is unclear.

To simplify, a representative2 empirical study considers the regression model:

yi = xiα1 + x̄iα2 + ϵi (1)

where yi is an outcome, xi is a vector of individual characteristics, and x̄i is the

average characteristics of their peers. Peers are fellow members of some social group

like classmates or co-workers, and all individual-level variables are predetermined

characteristics like gender and family background rather than treatments that can be

directly assigned by a policy maker. The coefficient α2 is interpreted as the effect of x̄i

— any intervention that changes x̄i by ∆x̄ changes yi by ∆x̄α2 — and the case for this

causal interpretation relies on some random mechanism that assigns peers. This model’s

simplicity is appealing but leaves important practical and conceptual issues to address.

The key practical issue is that researchers must choose which characteristics to

include and whether to add interaction terms or nonlinearities, in a setting with limited

data and high costs of model complexity. Should researchers aim to estimate complete

models with all potentially-relevant characteristics, or parsimonious models that only

include characteristics related to their research question?

The key conceptual issue is that the predetermined characteristics of peers cannot

be directly and individually manipulated by a policy maker. Changes to one peer

characteristic can only be implemented by moving specific individuals between groups,

which may induce changes in many other characteristics. For example, reducing the

number of boys in a classroom of fixed size requires replacing a specific boy with a

specific girl. These two students may differ in motivation, disruptive behavior, academic

ability, etc., as well as gender. As a result, the effect of a change to x̄i is not constant

and depends on how individuals are selected to implement the change. Given this

heterogeneity, what counterfactual policies can be evaluated using a research design

based on random peer assignment?

2The benchmark “linear in means” specification is used here for illustration; the issues discussed here also
apply to more flexible specifications that incorporate nonlinearities or interaction terms.
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This paper develops an explicit potential outcomes framework to address these

questions. The underlying model is nonparametric, and takes social interaction with

a specific and potentially unique individual as the treatment of interest. The main

results emphasize the use of simple linear regression models to measure heterogeneity

of the associated treatment effect across identifiable sub-populations. For example, the

coefficient α2 in the linear in means model (1) can often be interpreted as the effect of

replacing a randomly selected peer from one sub-population with a randomly selected

peer from another sub-population. This interpretation holds under straightforward

and testable conditions, and does not require researchers to estimate complete models.

Richer regression models can be used to relax key assumptions, and to make additional

counterfactual inferences on the effect of replacing an individual’s entire peer group, or of

reallocating peer groups across the entire population. Throughout the paper, emphasis

is placed on using the simplest regression model that can answer a given research

question. An illustrative application to estimating classroom peer effects in Project

STAR (Bietenbeck, 2025) shows how the results provide guidance on specification and

variable choice, and facilitate the interpretation of results from different specifications

within a common conceptual framework and set of identifying assumptions.

1.1 Related literature

A traditional alternative to the potential outcomes framework is to interpret a model

like equation (1) as the complete reduced form of the structural production function for

outcomes, include as many potentially-relevant peer characteristics as the data allow,

and hope that there are no relevant omitted variables. The limitations of this method

for causal inference are well known, but are particularly acute in this setting. Every

characteristic that affects one’s own outcome also affects peer outcomes through the

endogenous effect. If the endogenous effect is nonzero, the set of potentially-relevant

peer characteristics in the reduced form is identical to the virtually unlimited set

of potentially-relevant own characteristics. Unfortunately, limited sample sizes and

exploitable variation in peer characteristics in the available data sets make it impractical

to estimate a plausibly complete reduced form model.

Most papers that apply a potential outcomes framework to contextual effects

address the measurement of treatment effects with interference/spillovers (Manski, 2013;

Aronow and Samii, 2017). In that literature, the peer group is predetermined and the

counterfactual of interest is an individual-level variable representing some treatment

assignment. This contrasts sharply with the setting considered in this paper, where

all individual-level variables are predetermined and the counterfactual of interest is an
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assignment of individuals to different peer groups.

Three recent papers also consider peer assignment in a potential outcomes framework.

Li et al. (2019) and Basse et al. (2024) emphasize the complete model case (in the

language of this literature, x̄i is a correctly specified exposure mapping for the social

network of individual i), though they have some results that relax this assumption.

Graham et al. (2025) do not assume model completeness and treat observed peer

characteristics as imperfect proxies for unobserved peer characteristics. The analysis in

this paper is complementary to theirs, but emphasizes variable selection, specification

choice, and what can be learned from simple parametric regression models. In addition,

I consider a richer characteristics space and model observed characteristics as a function

of unobserved heterogeneity rather than as orthogonal to it. These two modeling

approaches are substantively equivalent (each can be mapped to the other by redefining

variables), but the formulation here helps to separate practical specification questions

from assumptions about causal mechanisms.

Finally, this paper is among several that use estimated peer effect models to predict

the consequences of population-level peer group reallocations. Bhattacharya (2009) de-

velops algorithms to find optimal assignments from model estimates. A field experiment

by Carrell et al. (2013) shows a key limitation of this approach: peer effect estimates

from one cohort of students were used to construct presumably optimal allocations for

a later cohort, but the “optimal” allocation yielded poor results because it was off the

support of the original data and thus highly sensitive to misspecification. Graham et al.

(2025) also note that the large changes needed to reach an optimal group assignment

are typically infeasible and emphasize tools for predicting the marginal effect of smaller

and more feasible reallocations.

2 Classroom peer effects in Project STAR

The model and results are illustrated in a running example based on Bietenbeck (2025),

who uses data from the Project STAR class size experiment to estimate classroom

peer effects. This data set has been repeatedly used for this purpose because its

experimental design randomly assigned students to classrooms. Bietenbeck (2025)

estimates contextual effects for classmate motivation, while other studies use Project

STAR to estimate endogenous effects (Boozer and Cacciola, 2001; Graham, 2008; Rose,

2017) and contextual effects for classmate gender (Whitmore, 2005; Graham et al.,

2025), age (Cascio and Schanzenbach, 2007), economic disadvantage (Chetty et al.,

2011), lagged achievement (Sojourner, 2013), and grade repeating (Bietenbeck, 2019).
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Collectively, these studies exhibit several issues raised in the introduction:

• Multiple researchers have measured contextual effects for the same outcomes in

the same data set, each using a different set of predetermined peer characteristics.

• These characteristics are correlated at the individual level, and are likely to be

correlated with other outcome-relevant unobserved/omitted characteristics.

• There is evidence of endogenous effects in the same outcomes and data set, implying

that the set of relevant peer characteristics in the reduced form is large.

• Random assignment produces too little variation in composition (Chetty et al.,

2011) to estimate models that are rich enough to be plausibly complete.

The running example will illustrate how these earlier studies can be interpreted within

the peers-as-treatments model, and the implications of different specification choices.

The analysis is based on Bietenbeck (2025) and its replication package (Bietenbeck,

2024). Following that paper’s methodological choices, reading and math test scores

are the main outcomes, the estimation sample is defined as students who have newly

entered in grade 2 or 3, the peer group is defined as returning students in the entry

grade classroom, and school-by-entry-grade fixed effects are included in all regressions

to account for non-random assignment to schools. Although Project STAR classes vary

in size, it will be expositionally convenient to assume that each class has exactly 16

students. Appendix A provides additional methodological details.

3 Model

This section develops the model, defining the general framework in Section 3.1, key

maintained assumptions in Section 3.2, and additional conditions in Section 3.3.

3.1 Framework and notation

The model features a population of heterogeneous individuals arbitrarily indexed by

i ∈ I ≡ {1, 2, . . . , I}. Each individual is characterized by an unobserved type τi ∈ T
and membership in some social group gi ∈ G ≡ {1, 2, . . . , G}. The population as a

whole is fully characterized by the random matrices T ∈ T I and G ∈ GI , in the sense

that all variables in the model are functions of (T,G).

The unobserved type has two essential features: it provides a complete description

of everything about the individual that is potentially relevant, and it is predetermined3

3As discussed in Section 1.1, this feature distinguishes this paper from the literature on treatment effects
with spillovers (Manski, 2013; Aronow and Samii, 2017).
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in the sense that it cannot be modified by a policymaker. The type space T is defined

abstractly, but one can interpret τi as representing a vector of characteristics.

Unlike unobserved types, group membership can be modified by a policymaker. Its

observed value is determined by a group assignment mechanism that is represented

by a discrete conditional PDF fG|T : GI × T I → [0, 1] such that:

fG|T(G0,T0) ≡ Pr(G = G0|T = T0) (2)

All causal inferences in this paper relate to the consequences of counterfactual group

assignments or mechanisms. Given a group assignment G, group g has size:

ng ≡ n(g,G) ≡
I∑

i=1

I (gi = g) (3)

with support Sn ⊂ I ∪ {0}, and individual i’s peer group is:

pi ≡ p(i,G) ≡ {j ̸= i : gj = gi} (4)

and has size |pi| = ngi − 1.

Each individual experiences a scalar outcome of interest yi ∈ R that depends on

both their own type and that of other group members:

Y ≡


y1
...

yI

 ≡


y1 (T,G)

...

yI (T,G)

 ≡ Y(T,G) (5)

The model does not include a direct causal effect of peer outcomes (“endogenous effects”

in the language of Manski 1993) but can be interpreted as the reduced form of such a

model. For ease of exposition, the outcome is a deterministic function of types and group

assignments. Appendix B.2 shows that post-assignment shocks can be accommodated.

For each individual i, we observe the outcome yi, the peer group gi, and a vector of

observed characteristics of interest xi ≡ (xi1, . . . , xiK) ∈ RK that depend on one’s

own type:

X ≡


x1

...

xI

 ≡


x(τ1)
...

x(τI)

 ≡ X(T) (6)

Like T, X is predetermined. The observed characteristics in X do not appear directly

in the outcome model (5) but xi could be a proxy, summary, or subset of the full set of
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potentially relevant characteristics represented by τi. This is a key feature of this model:

the observed characteristics in are not assumed to play any specific role in the “true”

causal model, but rather have been chosen by the researcher based on data availability

and their research question. The researcher’s choice of characteristics remains critical

because it determines which research questions can be addressed.

Given (X,G), peer characteristics for individual i are the multiset4 {xj}j∈pi
and

peer average characteristics are the vector x̄i ≡ (x̄i1, . . . , x̄iK) ∈ RK where:

x̄i ≡ x̄
(
{xj}j∈pi

)
≡ 1

|pi|
∑
j∈pi

xj (7)

For those who have no peers (pi = ∅ or ngi = 1), x̄i can be left undefined or set to zero.

Example 1 (Classmate effects on test scores). Section 2 describes several papers that

estimate the effect of various classmate characteristics on test scores in Project STAR

data. Abstracting from methodological details, these studies fit in the framework:

yi ≡ student i’s test score

gi ≡ classroom ID for student i

τi ≡ all relevant characteristics of student i

xi ≡ researcher-selected characteristics of student i

{xj}j∈pi
≡ researcher-selected characteristics of student i’s classmates

x̄i ≡ average characteristics of student i’s classmates

where the characteristics in xi vary across studies but those represented by τi do not.

3.2 Maintained assumptions

The basic assumptions defined in this section will be maintained throughout the analysis.

Assumption 1 (Outcome model). The outcome for individual i is:

yi(T,G) = y
(
τi, {τj}gi=gj

)
(8)

where y : T ×MT → R is an unknown function and MT is the set of multisets on T
4A multiset is a set that can have repeated elements. Formally, it is a pair (S,m) where S is the underlying

set and m : S → N is a function giving the number of times each element of S appears. In the interest
of readability, ordinary set notation, terminology, and operators are used whenever their generalization to
multisets is straightforward.
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Assumption 1 describes the complete outcome model at the individual level, which

depends on the full set of own characteristics (represented by τi) and peer characteristics

(represented by {τj}gi=gj
). The complete model cannot be estimated directly since τi

is unobserved, but it will be used to describe causal inferences that are feasible with

observed data. The outcome model is nonparametric but imposes some restrictions: no

cross-group spillovers, anonymous/exchangeable within-group spillovers, and no direct

effects of group assignment itself. Direct effects of group assignment or a more general

social network can in principle be accommodated in this model, but would require

additional structure and assumptions that are beyond the scope of this paper.

Assumption 2 (Finite type space). The type space has finite size T ≡ |T |.

Assumption 2 limits mathematical complexity by allowing the use of elementary

probability theory. It also allows types to be represented as finite scalars:

T ≡ {1, 2, . . . , T} (9)

by assigning an integer to each unique value of the original type space. The ordering of

types in (9) is arbitrary and need not convey ranking or similarity information, and the

number of types can be large to represent a rich underlying characteristics space.

Assumption 3 (Independent types). Each individual’s type is an independent draw

from a common type distribution:

Pr(T = T0) =
I∏

i=1

fτ (τi(T0)) (10)

where fτ : T → [0, 1] is some unknown discrete PDF.

Assumption 3 is innocuous: the indexing of individuals is arbitrary, so independence

is supported by standard exchangeability arguments. This unconditional independence

does not imply conditional independence of types given (X,G).

Assumption 4 (Rank condition). E(d′
idi) is full rank where di ≡ vec(1,xi, x̄i,x

′
ix̄i).

Assumption 4 is the standard rank condition needed for identification of relevant

regression (best linear predictor) coefficients from the joint distribution of (yi,xi, x̄i).

Assumption 5 (Base type). The support of xi includes e0, a K-vector of zeros.

Assumption 5 is just a convenient normalization that simplifies some definitions.
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Assumption 6 (Constant group size). Each peer group in G has exactly n0 members:

ng = n0 ∀g ∈ G (11)

where n0 ≥ 2 is an integer and I = n0G.

Assumption 6 is a standard assumption that simplifies exposition. Variable group

size is typically handled in applied work by parametric assumptions, but can be

accommodated nonparametrically in this setting by including group size as a condition-

ing/explanatory variable. See Appendix B.2 for details.

3.3 Additional conditions

The conditions defined in this section are not maintained as assumptions throughout

the paper, but will play a key role in specific results.

Definition 1 (Simple random assignment). The group assignment mechanism fG|T

satisfies simple random assignment (RA) if:

G ⊥⊥ T (RA)

i.e., peer group assignment does not depend on one’s unobserved type or any other

predetermined characteristics.

Definition 2 (Stratified random assignment). The group assignment mechanism fG|T

satisfies stratified random assignment (SA) based on observed characteristics if:

G ⊥⊥ T|X (SA)

i.e., peer group assignment may depend on one’s observed characteristics but does not

otherwise depend on one’s unobserved type.

Causal inference on changes to peer group assignments will typically require some

form of random group assignment. An important difference between these two forms of

random assignment is that simple random assignment does not constrain the researcher’s

choice of characteristics to include in xi. In contrast, stratified random assignment

requires xi to include all characteristics used in stratification.

Definition 3 (Peer separability). Given Assumption 1, outcomes are peer-separable

(PS) if the effect of replacing one peer with another does not depend on other peers:

y
(
a,
{
b′
}
∪ τ
)
− y (a, {b} ∪ τ ) = y

(
a,
{
b′
}
∪ τ ′)− y

(
a, {b} ∪ τ ′) (PS)
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for any a, b, b′ ∈ T and τ , τ ′ ∈ MT such that |τ | = |τ ′|.

Definition 4 (Own separability). Given Assumption 1, outcomes are own-separable

(OS) if the effect of changing peers does not depend on one’s own type:

y
(
a, τ ′)− y (a, τ ) = y

(
a′, τ ′)− y

(
a′, τ

)
(OS)

for any a, a′ ∈ T and τ , τ ′ ∈ MT .

Outcomes that are neither own-separable nor peer-separable are non-separable.

Both forms of separability are properties of the complete outcome function, and do not

depend on the specific characteristics in xi. Separability simplifies the analysis but is

not required for identification.

Definition 5 (Discrete characteristics). The researcher has discrete characteristics

of interest (DC) if the support of xi is:

Sx ≡ {e0, e1, . . . , eK} (DC)

where ek ∈ {0, 1}K is the unit vector of length K ≥ 1 containing one in column k and

zero elsewhere; and its probability distribution5 is fully described by:

µk ≡ Pr(xi = ek) (for all k ∈ 0, 1, . . . ,K)

µ ≡ E(xi) =
[
µ1 · · · µK

]
(12)

The main identification results in Sections 5.2 through 5.4 take discrete characteris-

tics as given. Discrete characteristics facilitate the separation of causal inference and

functional form issues because all functions of discrete xi are linear and (ngi , x̄i) fully

describes any {xj}j∈pi
for discrete xi.

In many applications, the characteristics of interest are naturally discrete. Continuous

characteristics can also be discretized when appropriate to the research question.

Identification does not depend on whether the discretization is coarse (small K) or fine

(large K), but there is a trade-off between model complexity (K) and precision in a

finite sample. A natural data-driven approach to discretizing a continuous characteristic

is to divide evenly by quantile (as in Example 2 below), with the number of levels

chosen to minimize out of sample forecast error (estimated by cross-validation) or some

information criterion. Tree-based approaches that vary both the number of levels and

their placement may also be useful. Discretization implies information loss, so functional

5Note that µ0 = 1−
∑K

k=1 µk is not included in the vector µ but can be expressed as a function of it.
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form assumptions may provide a better approximation to the researcher’s ideal model.

Section 5.5 develops a sieve-based framework for considering alternative approximations

including discrete, polynomial, and spline.

Example 2 (Classmate gender and motivation). Whitmore (2005) and Graham et al.

(2025) measure the effect of classmate gender (K = 1) which can be expressed as:

xi ≡ [xi1] ≡

1 if student i is male

0 if student i is female
(13)

Bietenbeck (2025) measures the effect of classmate motivation, which is continuous but

can be discretized. Table 7 in Bietenbeck (2025) reports results for regressions in which

motivation is discretized by tercile (K = 2):

xi ≡
[
xi1 xi2

]
≡



[
1 0

]
if low motivation (below 33rd percentile)[

0 1
]

if high motivation (above 66th percentile)[
0 0

]
otherwise

(14)

Both of these choices satisfy (DC).

4 Defining social effects

Causal social effects can be defined in this setting by stating an explicit potential

outcome function and the counterfactual outcomes of interest. As discussed in Section 1.1,

characteristics are predetermined, so the applicable counterfactuals in this model relate

to the peer group assignment, and not to the characteristics of any specific individual.

Definition 6 (Potential outcomes). Given Assumption 1, individual i’s potential

outcome function is:

yi(p) ≡ y
(
τi, {τj}j∈p

)
(15)

where p is any subset of I \ {i}.

That is, the observed outcome for individual i is yi(pi), and the counterfactual

outcome yi(p) is the outcome that would have occurred if i had been assigned peer

group p. The multiset {τj}j∈p serves as an exposure mapping (Aronow and Samii, 2017;

Basse et al., 2024): a summary of the full social environment (T,G) that is sufficient

to determine potential outcomes for individual i. The traditional model completeness

assumption imposes the more restrictive exposure mapping {x(τj)}j∈p.
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Counterfactual peer group assignments can be described as the effect of changing a

single peer (peer effects), an entire peer group (group effects), or the peer group

assignment mechanism itself (reallocation effects). These effects can be averaged over

the population (average effects) or conditioned on the characteristics of the treated

individual (conditional effects). The rest of this section defines each of these effect

types in terms of the potential outcome function defined in (15).

4.1 Peer effects

Peer effects predict the effect of replacing a single peer with another peer who has

different observed characteristics.

Definition 7 (Average peer effect). Given Assumptions 1, 5, and 6, the average peer

effect of peers with characteristics xp ∈ Sx is:

APE(xp) ≡ E
(
yi({j} ∪ p̃)− yi(

{
j′
}
∪ p̃)

∣∣xj = xp,xj′ = e0
)

(16)

where p̃ is a purely random draw of n0 − 2 peers from I \ {i, j, j′}. When xi is discrete

(DC), the average peer effect of peers of observed type ℓ is:

APEℓ ≡ APE(eℓ) (17)

where APE(·) is as defined in equation (16).

The average peer effect is similar to the “average spillover effect” in Graham

et al. (2025). Although the definition looks complex, the concept is simple. Take a

representative (random) individual (i) with a random peer group ({j′}∪ p̃) that includes

a peer (j′) of the base observed type (xj′ = e0). Replace that peer with a random peer (j)

of observed type xp (xj = xp). The average peer effect APE(xp) is the predicted change

in this individual’s outcome. The base type has APE0 = APE(e0) = 0 by construction,

and can be chosen for convenience without limiting the available comparisons.

Average peer effects are causal — the expected difference between two potential

outcomes — but do not generally represent the causal impact of the peer characteristic

itself. Instead, interaction with a specific individual is the treatment of interest, and

average peer effects describe how the associated treatment effect varies across researcher-

selected sub-populations. An analogy would be when a labour economist separately

estimates the elasticity of labour supply for workers with and without children. The

elasticity itself is causal, but its heterogeneity across the two sub-populations is not

necesssarily the causal effect of having children on labour supply.
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Rather than averaging across all treated individuals, researchers may also be inter-

ested in how peer effects vary with the treated individual’s characteristics of interest.

Definition 8 (Conditional peer effect). Given Assumptions 1, 5, and 6, the condi-

tional peer effect of peers with characteristics xp ∈ Sx on treated individuals with

characteristics xo ∈ Sx is:

CPE(xo,xp) ≡ E
(
yi ({j} ∪ p̃)− yi

({
j′
}
∪ p̃
)∣∣xi = xo,xj = xp,xj′ = e0

)
(18)

where p̃ is a purely random draw of n0 − 2 peers from I \ {i, j, j′}. When xi is discrete

(DC), the conditional peer effect of peers of observed type ℓ on treated individuals of

observed type k is:

CPEkℓ ≡ CPE(ek, eℓ) (19)

where CPE(·, ·) is as defined in equation (18).

Average and conditional peer effects are well-defined under the model’s maintained

assumptions without requiring additional conditions like random assignment, separa-

bility, or discrete characteristics. However, these additional conditions may play an

important role in identification and interpretation.

4.2 Group effects

Peer group effects predict the effect of replacing the entire peer group. This effect

differs from a simple aggregation of individual peer effects if outcomes are non-separable.

For example, a low-motivation classmate may be more disruptive if there are other

low-motivation students in the classroom, or classroom social dynamics may change

abruptly when boys outnumber girls (Hoxby and Weingarth, 2005).

Group effects can be different for every value in the support of {xj}j∈pi
, denoted

by S{x}. This support can be large, but binning can be used for empirical tractability.

Definition 9 (Binned peer group variable). Given Assumption 6, let the binned peer

group variable zi ∈ {0, 1}B be defined by the binning scheme z(·):

zi ≡ z
(
{xj}j∈pi

)
≡

B∑
b=1

ebI
(
{xj}j∈pi

∈ Sb{x}
)

(20)

where
(
S0{x}, S

1
{x}, . . . ,S

B
{x}

)
is a partition of S{x} into B + 1 bins, and eb is the unit

vector of length B containing one in column b and zero elsewhere. Bin b is a singleton

if
∣∣∣Sb{x}∣∣∣ = 1 and pooled if

∣∣∣Sb{x}∣∣∣ > 1.
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The binning scheme z(·) is chosen by the researcher to reflect their research question,

given the available variation in the data. As with discretization, the identification

results in Section 5 apply to any binning scheme but there is a trade-off between model

complexity and precision in a finite sample. The data-driven approaches to discretization

discussed in Section 3.2 can also be applied to binning.

Example 3 (A binned variable for classmate gender). A researcher interested in the

effect of having an unusually high proportion of male or female classmates may bin peer

groups into mixed, female-dominated, and male-dominated (B = 2):

zi = z
(
{xj}j∈pi

)
=


[ 0 0 ] if 0.43 ≤ x̄i ≤ 0.57

[ 1 0 ] if x̄i < 0.43

[ 0 1 ] if x̄i > 0.57

(21)

where x̄i is the male share among classmates. The specific cutoffs are roughly the 25th

and 75th percentiles of x̄i in the Project STAR data, and are chosen to reflect the

research question of the effect of a “male-dominated” or “female-dominated” peer group.

Group effects can be defined for every value in S{x} or for each bin.

Definition 10 (Average group effect). Given Assumptions 1 and 6, the average group

effect of a peer group with characteristics xp ∈ S{x} is:

AGE(xp) ≡ E
(
yi(p̃)− yi(q̃)

∣∣∣{xj}j∈p̃ = xp,xj = e0 for all j ∈ q̃
)

(22)

where p̃ and q̃ are purely random draws of n0 − 1 peers from I \ {i}.
Given a binning scheme z(·), the average group effect of a bin b peer group is:

AGEb ≡ E
(
yi(p̃)− yi(q̃)

∣∣∣z({xj}j∈p̃
)
= eb, z

(
{xj}j∈q̃

)
= e0

)
(23)

where p̃ and q̃ are purely random draws6 of n0 − 1 peers from I \ {i}.

With binning, the average group effect can be interpreted as the predicted change in

outcome from replacing the average (random) peer group from one bin with the average

peer group from another bin, where the bins are defined by the peer characteristics of

interest. Group effects are defined relative to a base bin whose group effect is AGE0 = 0

6Note that AGEb and CGEk,b are defined in terms of a purely random draw of peers, and thus imposes a

particular conditional distribution for Pr
(
{xj}j∈pi

∣∣∣ zi). Proposition 7 in Section 5.4 shows that AGEb and

CGEk,b are only informative about peer group reallocations that preserve this conditional distribution. See
Section 5.4 for additional details.
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by construction, and the choice of base is without loss of generality: the average effect

of replacing a bin b peer group with a bin b′ peer group is AGEb′ −AGEb.

Definition 11 (Conditional group effects). Given Assumptions 1 and 6, the condi-

tional group effect of a peer group with characteristics xp ∈ S{x} on treated individuals

with characteristics xo ∈ Sx is:

CGE(xo,xp) ≡ E

yi(p̃)− yi(q̃)

∣∣∣∣∣∣xi = xo, {xj}j∈p̃ = xp,

xj = e0 for all j ∈ q̃

 (24)

where p̃ and q̃ are purely random draws of n0 − 1 peers from I \ {i}.
Given discrete characteristics (DC) and a binning scheme z(·), the conditional group

effect of a bin b peer group on treated individuals of observed type k is:

CGEkb ≡ E
(
yi(p̃)− yi(q̃)

∣∣∣xi = ek, z
(
{xj}j∈p̃

)
= eb, z

(
{xj}j∈q̃

)
= e0

)
(25)

where p̃ and q̃ are purely random draws of n0 − 1 peers from I \ {i}.

As with average and conditional peer effects, average and conditional group effects are

well-defined under the maintained assumptions of the model, though their identification

and interpretation may depend on additional conditions.

An important special case of binning is when the peer group variable is saturated,

i.e., each value in S{x} has its own bin.

Definition 12 (Saturated peer group variable). Given Assumption 6 and discrete

characteristics (DC), the saturated peer group variable zSi is:

zSi ≡ zS
(
{xj}j∈pi

)
≡

S∑
s=1

esI (m(x̄i) = s) (26)

where m : Sx̄ → {0, 1, . . . , S} is a strict ordering on Sx̄ such that m(e0) = 0, and es is

the unit vector of length S = |Sx̄| − 1 containing one in column s and zero elsewhere.

Saturated peer group variables allow precise identification results with minimal

assumptions, but the support of x̄i is typically too large for zSi to be a practical

explanatory variable. Empirical researchers may prefer a more parsimonious regression

model based on substantially fewer bins, or an approximation to the unrestricted model

using functional form restrictions (see Section 5.5 and Appendix B.3).

Example 4 (A saturated group variable for classmate gender). With classroom size

n0 = 16, the male share x̄i of student i’s classroom has support Sx̄ =
{
0, 1

15 ,
2
15 , . . . , 1

}
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which has |Sx̄| = 16 elements. It fully describes the gender composition of student i’s

classmates and can be represented by the saturated variable:

zSi = zS
(
{xj}j∈pi

)
=



[ 0 0 · · · 0 ] if x̄i = 0.0

[ 1 0 · · · 0 ] if x̄i =
1
15

...

[ 0 0 · · · 1 ] if x̄i = 1.0

This saturated variable is also a binned variable with B + 1 = 16 bins.

4.3 Reallocation effects

Reallocation effects predict the effect of changing the entire social network, accounting

for the constraint that changes to one peer group imply offsetting changes to other

peer groups. For example, increasing the number of boys in one classroom requires a

corresponding reduction in the number of boys in other classrooms.

As with peer and group effects, the first step is to define the relevant counterfactual

scenario, which in this case is a (possibly stochastic) rule for assigning individuals

to groups. That counterfactual rule will be called a reallocation mechanism, and the

resulting assignment will be called a reallocation.

Definition 13 (Reallocation). A reallocation mechanism is a function GR : T I ×
GI × [0, 1]N → GI

n0
. A reallocation is a random vector:

G̃R ≡ GR(T,G,ρ) ≡


g1R(T,G,ρ)

...

gIR(T,G,ρ)

 (27)

where GR is a reallocation mechanism and ρ = (ρ1, ρ2, . . .) ⊥⊥ T,G is a sequence of

independent U(0, 1) random variables.

Reallocation mechanisms are deterministic functions, but can use a random num-

ber generator or similar device (represented by ρ). They can be based on observed

characteristics X = X(T), outcomes Y = Y(T,G), or other relevant information.

Example 5 (Reallocations by gender). Suppose for convenience there is a large popu-

lation of half boys and half girls allocated to classrooms of size n0 = 16. Examples of

reallocation mechanisms in this setting include:
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• Evenly-divided: randomly select 8 boys and 8 girls for each classroom.

• 6/10 divided: randomly select 6 boys and 10 girls for half of the classrooms, and

randomly select 10 boys and 6 girls for the rest.

• Random: randomly select 16 students for each classroom.

• 60/40 random: randomly place students in the “60/40” sub-population with proba-

bility 0.6 for boys and 0.4 for girls, and place the rest in the “40/60” sub-population.

Then randomly assign students to classrooms within each sub-population.

• Single-gender: randomly assign students to all-boy and all-girl classrooms.

Appendix A.1 defines GR(·) functions to implement each mechanism.

Each reallocation mechanism implies a probability distribution over the counterfa-

cutal group assignment G̃R and counterfactual outcomes Y(T, G̃R), so the average

outcome can be compared across any two mechanisms.

Definition 14 (Reallocation effects). Given Assumptions 1, 5, and 6, the average

reallocation effect of the reallocation mechanism GR is:

ARE(GR) ≡ E
(
yi(p(i, G̃R))− yi(p̃)

)
(28)

and its conditional reallocation effect on treated individuals of observed type k is:

CREk(GR) ≡ E
(
yi(p(i, G̃R))− yi(p̃)

∣∣∣xi = ek

)
(29)

where G̃R = GR(T,G,ρ) and p̃ is a purely random draw of n0 − 1 peers from fτ .

Reallocation effects are defined relative to a benchmark mechanism of simple random

assignment, but any two reallocation mechanisms G0 and G1 can be compared by

calculating ARE(G1)−ARE(G0) or CREk(G1)− CREk(G0).

5 Main results

This section demonstrates the relevant properties of the model. Section 5.1 establishes

some preliminary results, and the next three sections provide identification results for

peer effects (5.2), group effects (5.3), and reallocation effects (5.4) under the assumption

of discrete characteristics. Section 5.5 addresses continuous characteristics.
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5.1 Preliminaries

Proposition 1 below shows that simple causal effects are weighted averages of more

complex effects, with weights derived from the probability distribution of xi.

Proposition 1 (Aggregation). Given Assumptions 1–6 and discrete characteristics

(DC):

1. Average effects are a weighted average of conditional effects:

APEℓ =

K∑
k=0

µkCPEkℓ (30)

AGEb =
K∑
k=0

µkCGEkb (31)

ARE(GR) =
K∑
k=0

µkCREk(GR) (32)

where µk = E(xik) = Pr(xi = ek) as defined earlier.

2. Binned group effects are a weighted average of saturated group effects:

AGEb =

K∑
k=0

S∑
s=1

µk

(
wG
sb(µ)− wG

s0(µ)
)
CGES

ks (33)

CGEkb =
S∑

s=1

(
wG
sb(µ)− wG

s0(µ)
)
CGES

ks (34)

where CGES
ks is the conditional group effect for bin s of the saturated variable zSi ,

wG
sb(µ) ≡

∑
xp∈S{x} M (x̄ (xp) , n0 − 1,µ) I

(
zS (xp) = es

)
I (z (xp) = eb)∑

xp∈S{x} M(x̄ (xp) , n0 − 1,µ)I (z (xp) = eb)
(35)

is a weighting function, and:

M(x̄, n,µ) ≡ n!∏K
k=0(nx̄·k)!

K∏
k=0

µnx̄·k
k (36)

is the probability of drawing the value nx̄ from a multinomial distribution with n

trials and categorical probability vector µ.
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3. Peer effects are a weighted average of saturated group effects:

APEℓ =
K∑
k=0

S∑
s=1

µk

(
wP
sℓ(µ)− wP

s0(µ)
)
CGES

ks (37)

CPEkℓ =

S∑
s=1

(
wP
sℓ(µ)− wP

s0(µ)
)
CGES

ks (38)

where:

wP
sℓ(µ) ≡

∑
xp∈Mx:|xp|=n0−2

M (x̄ (xp) , n0 − 2,µ) I
(
zS (xp ∪ {eℓ}) = es

)
(39)

is a weighting function and Mx is the set of all multisets on Sx.

Figure 1: Weights for binned group effects, bin b = (< 43% boys). Weights are proportional
to random assignment probabilities, positive within the bin, and negative in the base bin.

Example 6 (Weights for binned group effects). Figure 1 shows the weights relating

group effects for the binned variable defined in Example 3 to those for the saturated

variable defined in Example 4. The first graph shows the probability distribution of

classmate share boys x̄i under random assignment, i.e., the function M(·, n,µ). The
second graph shows the weights wG

sb(µ) − wG
s0(µ) for bin b = 1 (< 43% boys). As the

figure shows, each value in the bin receives a positive weight proportional to its probability

under random assignment, and each value in the base bin receives a negative weight.

Proposition 2 below restates a standard result that allows individual characteristics

to be added to or dropped from certain regressions.
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Proposition 2 (Implications of simple random assignment). Given Assumption 3,

simple random assignment (RA) implies:

L(yi|ci, x̄i) = L(yi|ci) + L(yi|x̄i) + constant (40)

L(yi|ci, zi) = L(yi|ci) + L(yi|zi) + constant (41)

for any vector ci = c(τi) of own characteristics.

Lemma 1 below shows that stratified random assignment produces the same condi-

tional expectation function (if not the same best linear predictor) as simple random

assignment. It will be used to prove identification under stratified random assignment.

Lemma 1 (Implications of stratified random assignment). Given Assumptions 1–6 and

discrete characteristics (DC), stratified random assignment (SA) implies:

E(yi|xi = xo, x̄i = xp) = E
(
yi(p̃)

∣∣∣xi = xo, x̄
(
{xj}j∈p̃

)
= xp

)
(42)

where p̃ is a purely random draw of (n0 − 1) peers from I \ {i}.

Proposition 3 below shows that any peer-separable outcome function can be written

as a sum of latent variables, and peer effects as their conditional expectations.

Proposition 3 (Implications of separability). Given Assumptions 1–6, let PE : T 2 ×
{2, 3, . . .} → R be defined:

PE(a, b, n) ≡
y
(
a,
{
b[n−1]

})
n− 1

(43)

where b[n−1] is n− 1 copies of b, and let PEij ≡ PE(τi, τj , n0). Then:

1. Peer separability (PS) implies that, for any p of size |p| = n0 − 1:

yi(p) =
∑
j∈p

PEij (44)

and conditional and average peer effects can be expressed as:

CPE(xo,xp) = E(PEij |xi = xo,xj = xp)− E(PEij |xi = xo,xj = e0) (45)

APE(xp) = E(PEij |xj = xp)− E(PEij |xj = e0) (46)

for all xo,xp ∈ Sx.
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2. Peer separability (PS) and own separability (OS) imply that, for any p of size

|p| = n0 − 1:

yi(p) =
∑
j∈p

(OEi + PEj) (47)

where OEi ≡ PE(τi, 1, n0) + c, PEj ≡ PE(1, τj , n0)− PE(1, 1, n0)− c, and c is

an arbitrary constant. Conditional and average peer effects can be expressed as:

CPE(xo,xp) = APE(xp) = E(PEj |xj = xp)− E(PEj |xj = e0) (48)

for all xo,xp ∈ Sx.

The pair-specific latent variable PEi,j is defined without assuming separability, and

describes individual i’s outcome if all peers were identical to peer j. Peer separability has

the additional implication that replacing peer j with new peer j′ will change individual

i’s outcome by PEi,j′ −PEi,j . Own separability allows this pairwise effect to be further

decomposed into an own effect OEi and peer effect PEj : replacing peer j with new peer

j′ will change i’s outcome by PEj′ −PEj , and the difference OEi−OEj is the difference

in outcomes between individuals i and j if they had the same peers. This decomposition

is defined up to an additive constant that cancels out in such comparisons.

5.2 Identifying peer effects

Proposition 4 below shows identification of average and conditional peer effects under

the asssumptions of peer separability and (stratified) random assignment. The identifi-

cation results are constructive and suggest simple linear regression estimators whose

implementation is described in more detail in Appendix B.1.

Proposition 4 (Identification of peer effects). Given Assumptions 1–6 and discrete

characteristics (DC):

1. Simple random assignment (RA) and peer separability (PS) imply that peer effects

are identified from the joint distribution of (yi,xi, x̄i):

APEℓ =
α1ℓ

n0 − 1
(49)

CPEkℓ =
β2ℓ + β3kℓ
n0 − 1

(50)
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where (α1ℓ, β2ℓ, β3kℓ) are coefficients from the best linear predictors:

L(yi|x̄i) ≡ α0 + x̄iα1 (51)

L(yi|xi, x̄i,x
′
ix̄i) ≡ β0 + xiβ1 + x̄iβ2 + xiβ3x̄

′
i (52)

i.e., α1ℓ is element ℓ of α1, β2ℓ is element ℓ of β2, β3kℓ is the element in row k

and column ℓ of β3 for all k > 0, and β30ℓ ≡ 0 for all ℓ.

2. Stratified random assignment (SA) and peer separability (PS) imply that peer

effects are identified from the joint distribution of (yi,xi, x̄i):

APEℓ =
K∑
k=0

µk
β2ℓ + β3kℓ
n0 − 1

(53)

CPEkℓ =
β2ℓ + β3kℓ
n0 − 1

(54)

where (β2ℓ, β3kℓ) are defined as in equation (52).

Returning to the issues raised in the introduction, result (49) shows what can be

learned from the simple linear in means model: under the two key assumptions of

peer separability and simple random assignment, this model can be used to estimate

average peer effects for any discrete characteristic(s). Proposition 2 also implies that own

characteristics can be included as in the canonical linear in means model (1), excluded

as in equation (51), or replaced with any vector of individual-level characteristics. These

results do not require the assumption of own separability, or that the regression model

is complete in the sense of including all outcome-relevant characteristics.

Two key assumptions each play a distinct role in this result. Simple random assign-

ment allows average effects to be recovered without including an interaction between

own and peer characteristics: any interaction effect averages out. Peer separability adds

linearity in average characteristics: outcomes are sums of pairwise latent variables and

their conditional expectations are linear in the discrete peer characteristics.

Adding own characteristics and an interaction term (52) allows the researcher to

assume stratified rather than simple random assignment (53) or to measure conditional

rather than average peer effects (50, 54). Stratified random assignment produces the

same conditional expectation function as simple random assignment (by Lemma 1),

but not the same best linear predictor since xi and x̄i are no longer independent. As a

result, average peer effects can only be recovered from regression model (52) which is

rich enough to recover the full CEF.
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Example 7 (Gender peer effects). Table 1 reports estimates of gender peer effects. Given

Assumptions 1–6, simple random assignment (RA) into classrooms of size n0 = 16,

and peer separability (PS), results (49) and (50) in Proposition 4 can be applied to the

regression coefficients in (1) and (2) to predict that replacing a randomly-selected girl

with a random boy:

• reduces the average student’s reading score by

– |APE1| = 0.342
16−1 = 0.023 standard deviations (by column 1).

– |APE1| = (0.453×0.268)+0.547×(0.268+0.133)
16−1 = 0.023 SD (by column 2).

• reduces the average girl’s reading score by |CPE01| = 0.268
16−1 = 0.018 SD.

• reduces the average boy’s reading score by |CPE11| = 0.268+0.133
16−1 = 0.027 SD.

Columns (5) and (6) have the same derivation and interpretation for math scores. The

other columns in Table 1 are discussed in Examples 10 and 11 of Section 5.3.

Reading score Math score
(1) (2) (3) (4) (5) (6) (7) (8)

Share male peers −0.342 −0.268 -0.224 −0.532∗∗ −0.279 −0.303
(0.286) (0.372) (0.725) (0.226) (0.338) (0.624)

Male x Share male peers −0.133 -0.142 −0.455 -0.453
(0.390) (0.390) (0.412) (0.411)

Share male peers < 0.43 -0.024 -0.066 0.090 0.012
(0.066) (0.109) (0.065) (0.100)

Share male peers > 0.57 -0.119∗ -0.083 -0.045 0.021
(0.072) (0.110) (0.065) (0.100)

Sample size (# students) 2,185 2,185 2,185 2,185 2,196 2,196 2,196 2,196
# clusters 147 147 147 147 148 148 148 148

Average effect of a male peer:
All students (APE1) -0.023 -0.023 -0.035∗∗ -0.035∗∗

Girls (CPE01) -0.018 -0.019
Boys (CPE11) -0.027 -0.049∗∗∗

p-value for test of:
own separability 0.733 0.271
peer separability 0.421 0.954

Table 1: Gender peer and group effects in Project STAR. Additional control variables include
own gender and a school/grade fixed effect. Cluster-robust standard errors in parentheses,
∗ = 0.1, ∗∗ = 0.05, ∗∗∗ = 0.01. See Appendix A for additional details.

The results in Proposition 4 do not depend on the researcher’s choice of which

(discrete) characteristics to include in the model. An alternative choice of characteristics

is equally valid but addresses a different set of counterfactual questions.
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Example 8 (Motivation peer effects). Table 2 reports estimates of motivation peer

effects. Column (1) reports regression coefficients for the discrete motivation variable

defined in equation (14) of Example 2, and are comparable to results in Bietenbeck

(2025) Table 7. Given the assumptions from Example 7, the results in column (1) imply:

• replacing a random medium-motivation classmate with a random low-motivation

student reduces the average student’s reading score by |APE1| = 0.426
16−1 = 0.028 SD.

• replacing a random medium-motivation classmate with a random high-motivation

student increases the average student’s reading score by |APE2| = 0.220
16−1 = 0.014

SD.

• replacing a random high-motivation classmate with a random low-motivation stu-

dent reduces the average student’s reading score by |APE1−APE2| = 0.426+0.220
16−1 =

0.043 SD.

Column (5) has the same derivation and interpretation for math scores. The other

columns in Table 2 are discussed in Example 9 below.

Reading score Math score
(1) (2) (3) (4) (5) (6) (7) (8)

Share low-motivation (LM) peers −0.426∗∗ −0.540∗∗∗ −0.523∗∗∗ -0.396∗ −0.281 -0.320∗ -0.285 -0.292
(< 33rd percentile) (0.167) (0.136) (0.137) (0.219) (0.189) (0.185) (0.187) (0.269)

Share high-motivation (HM) peers 0.220 0.076
(> 66th percentile) (0.213) (0.283)

Share male peers -0.242 -0.144 -0.477∗∗ -0.482∗

(0.276) (0.301) (0.229) (0.271)
Share male LM peers -0.243 0.014

(0.345) (0.341)
Sample size (# students) 2,185 2,185 2,185 2,185 2,196 2,196 2,196 2,196
# clusters 147 147 147 147 148 148 148 148

Avg effect of an LM peer:
replacing MM peers -0.028∗∗ -0.019
replacing HM peers -0.043∗∗∗ -0.024
replacing MM/HM peers -0.036∗∗∗ -0.036∗∗∗ -0.036∗∗∗ -0.021∗ -0.022∗ -0.022∗

Avg effect of a male LM peer:
replacing male MM/HM peers -0.035∗∗∗ -0.043∗∗∗ -0.019 -0.019
replacing female MM/HM peers -0.051∗∗∗ -0.052∗∗∗ -0.051∗∗∗ -0.051∗∗∗

replacing female LM peers -0.016 -0.026 -0.032∗∗ -0.031
Avg effect of a female LM peer:

replacing male MM/HM peers -0.019 -0.017 0.013 0.013
replacing female MM/HM peers -0.035∗∗∗ -0.026∗ -0.019 -0.019
replacing male LM peers 0.016 0.026 0.032∗∗ 0.031

Table 2: Motivation peer effects in Project STAR. Additional control variables include
own gender and a school/grade fixed effect. Cluster-robust standard errors in parentheses,
∗ = 0.1, ∗∗ = 0.05, ∗∗∗ = 0.01. See Appendix A for additional details.
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The framework can accommodate multiple characteristics without requiring that

those characteristics constitute a complete causal model.

Example 9 (Classmate gender and motivation). Table 2 also reports estimated peer

effects for the combination of gender and motivation. Column (2) is similar to column

(1), but with motivation coded as a single binary variable for expositional convenience.

Column (3) adds peer gender, while column (4) adds the interaction of peer gender

and motivation. Regressions (1), (2), and (4) directly fit into Proposition 4, while (3)

can be interpreted as a restricted version of (4). Columns (5) through (8) repeat the

analysis with math scores. Gender and motivation are not likely to be the only relevant

peer characteristics, so including both characteristics is not enough to make the model

complete. Instead, these richer models open up an additional set of comparisons.

The results for reading predict a smaller effect of replacing a random girl with

a random boy if both students have similar motivation levels, and a larger effect of

replacing a random medium/high-motivation student with a random low-motivation

student if both students are boys.

5.3 Identifying group effects

Proposition 5 below shows that group affects can be identified without requiring the

strong assumption of peer separability. As with Proposition 4, the identification results

are constructive and can in some cases imply very simple regression models.

Proposition 5 (Identification of group effects). Given Assumptions 1–6 and discrete

characteristics (DC):

1. Simple random assignment (RA) implies that binned group effects are identified

from the joint distribution of (yi,xi, zi):

AGEb = γ1b (55)

CGEkb = δ2b + δ3kb (56)

where (γ1b, δ2b, δ3kb) are coefficients from the best linear predictors:

L(yi|zi) ≡ γ0 + ziγ1 (57)

L(yi|xi, zi,x
′
izi) ≡ δ0 + xiδ1 + ziδ2 + xiδ3z

′
i (58)

i.e., γ1b is element b of γ1, δ2b is element b of δ2, δ3kb is the element in row k and

column b of δ3 for all k > 0, and δ30b ≡ 0 for all b.
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2. Stratified random assignment (SA) implies that saturated group effects are identified

from the joint distribution of (yi,xi, x̄i):

CGES
ks = λ2s + λ3ks (59)

where (λ2s, λ3ks) are coefficients from the best linear predictor:

L(yi|xi, z
S
i ,x

′
iz

S
i ) ≡ λ0 + xiλ1 + zSi λ2 + xiλ3z

S
i
′

(60)

i.e., λ2s is element s of λ2, λ3ks is the element in row k and column s of λ3 for

all k > 0, and λ30s ≡ 0 for all s. Peer effects and binned group effects are also

identified:

AGEb =

K∑
k=0

S∑
s=1

µk

(
wG
sb(µ)− wG

s0(µ)
)
(λ2s + λ3ks) (61)

CGEkb =
S∑

s=1

(
wG
sb(µ)− wG

s0(µ)
)
(λ2s + λ3ks) (62)

APEℓ =
K∑
k=0

S∑
s=1

µk

(
wP
sℓ(µ)− wP

s0(µ)
)
(λ2s + λ3ks) (63)

CPEkℓ =

S∑
s=1

(
wP
sℓ(µ)− wP

s0(µ)
)
(λ2s + λ3ks) (64)

where wG
sb(·) and wP

sℓ(·) are defined in Proposition 1.

As in Proposition 4, simple random assignment allows the researcher to recover

informative causal effects from a simple regression model. For example, result (55) in

Proposition 5 implies that average group effects can be recovered from regression model

(57) with a coarse binning scheme and no individual characteristics or interaction terms.

Such a model can be estimated with reasonable precision given limited data.

Example 10 (Group effects for classmate gender). Given Assumptions 1–6 and simple

random assignment (RA) into classrooms of size n0 = 16, the results in column (3) of

Table 1 imply that:

• moving from the average mixed classroom (43% to 57% boys) to the average female-

dominated classroom (< 43% boys) reduces the average student’s reading score by

|AGE1| = 0.024 SD.

• moving from the average mixed classroom to the average male-dominated classroom

(> 57% boys) reduces the average student’s reading score by |AGE2| = 0.119 SD.
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The results in column (7) have the a similar interpretation for math scores.

Proposition 5 also shows general identification of both peer and group effects under

stratified random assignment. However, the saturated regression model (60) required

to recover these effects is likely to be impractical in most applications. A researcher

may choose to impose functional form assumptions as a feasible approximation to the

saturated model. Appendix B.3 discusses this alternative in more detail.

Since separability assumptions imply functional form restrictions but are not required

for identification, they are testable. Proposition 6 below describes two simple implications

that can be tested using linear regression coefficients.

Proposition 6 (Testable implications of separability). Given Assumptions 1–6, discrete

characteristics (DC), and stratified random assignment (SA):

1. Peer separability (PS) implies:

L(yi|xi, x̄i,x
′
ix̄i, zi) = L(yi|xi, x̄i,x

′
ix̄i) (65)

2. Peer separability (PS) and own separability (OS) imply:

L(yi|xi, x̄i,x
′
ix̄i) = L(yi|xi, x̄i) (66)

The implications in Proposition 6 hold for any (xi, zi) since separability is a property

of the outcome function y(·, ·) and not of the researcher’s chosen explanatory variables

or binning scheme. These researcher choices do affect the power of the test.

Example 11 (Separability tests). Columns (4) and (8) in Table 1 implement the

peer separability test described in equation (65). The coefficients on the two binned

peer group variables are jointly insignificant, so we cannot reject peer separability. The

statistically insignificant interaction terms in columns (2) and (6) imply we cannot

reject own separability using the test described in equation (66). Both tests have low

power due to the sample size, so they provide only weak evidence in favor of separability.

5.4 Identifying reallocation effects

Proposition 7 below shows that reallocation effects can be derived from peer and/or

group effects.

Proposition 7 (Identification of reallocation effects). Let GR be a reallocation mech-

anism such that G̃R = GR(T,G,ρ) satisfies Assumption 6 and stratified random

assignment (SA). Then given Assumptions 1–6 and discrete characteristics (DC):
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1. If (S1
x̄, . . . ,S

B
x̄ ) are singletons, and Pr(x̄i(X, G̃R) ∈ S0

x̄) = 0, then:

ARE(GR) =
K∑
k=0

B∑
b=1

µk∆zkb(GR)CGEkb (67)

CREk(GR) =

B∑
b=1

∆zkb(GR)CGEkb (68)

where:

∆zkb(GR) ≡ Pr
(
x̄i(X,GR(T,G,ρ)) ∈ Sb

x̄|xi = ek

)
− Pr

(
x̄i(p̃) ∈ Sb

x̄

) (69)

2. Peer separability (PS) implies:

ARE(GR) =
K∑
k=0

K∑
ℓ=1

µk∆x̄kℓ(GR)CPEkℓ(n0 − 1) (70)

CREk(GR) =

K∑
ℓ=1

∆x̄kℓ(GR)CPEkℓ(n0 − 1) (71)

where:

∆x̄kℓ(GR) ≡ E (x̄iℓ(X,GR(T,G,ρ))|xi = ek)− µℓ (72)

3. Peer separability (PS) and own separability (OS) imply:

ARE(GR) = 0 (73)

CREk(GR) =
K∑
ℓ=1

∆x̄kℓ(GR)APEℓ(n0 − 1) (74)

Identification of reallocation effects thus requires stratified random assignment for

both the observed group assignmentG (so that Proposition 4 or 5 applies and peer/group

effects are identified) and the counterfactual reallocation G̃R (so that Proposition 7

applies and reallocation effects can be derived from peer/group effects). Constructing

reallocation mechanisms that satisfy (SA) is straightforward: mechanisms based entirely

on X will work, as will mechanisms that use the observed G if it satisfies (SA). The

requirement that the counterfactual reallocation satisfies Assumption 6 is a support

condition: without further restrictions, outcomes cannot be predicted for reallocations

whose group size does not appear in the data.
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The details of Proposition 7 imply two additional practical constraints. First, average

peer/group effects are insufficient to evaluate any reallocation mechanism; estimates

of conditional effects are required. Second, in the absence of peer separability (PS),

reallocation effects can only be measured for reallocation mechanisms that place all of

their weight on singleton bins. With a moderate sample size, only a few values of x̄i

will be observed often enough under random assignment to estimate their conditional

group effects with reasonable precision.

Example 12 (Reallocation effects for classmate gender). Table 3 below shows estimated

reallocation effects for each of the reallocation mechanisms described in Example 5.

Details are available in Appendix A.1.

The first panel assumes peer separability (PS) and applies equations (70)–(72) to

columns (2) and (6) of Table 1. The results show monotonic reallocation effects: more

integrated classrooms produce better average outcomes because male peers have a stronger

negative effect on other boys than on girls.

The second panel applies equations (67)–(69) to binned group effect estimates that

do not assume separability. The evenly-divided reallocation effect is estimated using two

singleton bins
(
x̄i ≈ 7

15 , x̄i ≈ 8
15

)
and one pooled bin (all other values), and produces

similar predictions to the separable model. The 6/10 divided reallocation effect is es-

timated using four singleton bins and suggests an important difference from the first

panel: the cost of a classroom with many boys exceeds the benefit of a classroom with few.

This is broadly consistent with the group effect estimates in Table 1. No reallocation

effects are reported for the two mechanisms that have nonzero probability for all 16

values of x̄i because some values are not observed in the data.

5.5 Approximation and functional form

The identification results in Sections 5.2–5.4 use discretization and binning to abstract

from functional form restrictions. When this approach is adequate for the research

question, it provides simple regression models with clear interpretations that can be

estimated precisely from limited data. In other settings, continuity may be essential

to the research question. For example, a researcher may wish to estimate APE(xp)

for specific values of some continuous and/or high-dimensional characteristic xp, or to

estimate marginal effects. For these research questions, the discretized model is only

an approximation to the continuous model of interest. Discretizing implies information

loss, so other approximation methods may use information more efficiently.

This section describes a sieve-based method that allows xi to be any K-vector
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Reading score Math score
Reallocation ∆x̄01 ∆x̄11 CRE0 CRE1 ARE CRE0 CRE1 ARE
Separable model:

Evenly-divided 0.033 −0.033 −0.009 0.013 0.002 −0.009 0.024∗∗∗ 0.008
6/10 divided 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Random 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
60/40 random −0.020 0.020 0.005 −0.008 −0.001 0.006 −0.015∗∗∗ −0.005
Single-gender −0.500 0.500 0.134 −0.200 −0.033 0.139 −0.367∗∗∗ −0.114

Binned model:
Evenly-divided 0.033 −0.033 −0.016 0.081 0.032 0.036 −0.023 0.006
6/10 divided 0.000 0.000 −0.007 −0.149∗∗ −0.078∗ −0.070 −0.018 −0.044
Random 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
60/40 random −0.020 0.020 — insufficient data —
Single-gender −0.500 0.500 — insufficient data —

Table 3: Reallocation effects for classmate gender in Project STAR. Reallocation effects for
simple random assignment are reported for comparison and are always zero. Cluster-robust
p-values: ∗ = 0.1, ∗∗ = 0.05, ∗∗∗ = 0.01. See Appendix A.1 for additional calculation details.

while still exploiting the dimension-reducing implications of separability and random

assignment for measuring average peer effects. Sieve methods can also be useful in

measuring conditional and group effects; see Appendix B.3 for details.

By Proposition 3, peer separability allows the unrestricted E
(
yi

∣∣∣{xj}j∈pi

)
— an

unknown function of (n0 − 1)K variables — to be expressed in terms of E (PEij |xj ),

an unknown function of K variables.

(PS,RA) =⇒ E
(
yi

∣∣∣{xj}j∈pi

)
=
∑
j∈pi

E (PEij |xj ) (75)

The unrestricted E (PEij |xj ) can be approximated by a sieve (Hansen, 2014): a series

of flexible linear models whose complexity is increasing in the sample size. Average peer

effects can then be recovered by applying equation (46) in Proposition 3.

Definition 15 (Sieve approximation). Given Assumptions 1–6, a sieve approximation

of order m to the function a : RK → R is a known function am : RK → Rm such that:

am(xp)π̄m ≈ a(xp) (76)

for the unknown parameter vector π̄m ≡ E (am(xi)
′am(xi))

−1E (am(xi)
′a(xi)).

As shown in Proposition 8 below, the linearity of the approximation in (76) carries

through the sum in (75), producing an approximation to the unrestricted CEF whose
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coefficients can be estimated by OLS and used to estimate average peer effects.

Proposition 8 (Sieve model for average peer effects). Given Assumptions 1–6 and peer

separability (PS), let am be a sieve approximation of order m to a(xp) ≡ E (PEij |xj = xp )

and let:

π ≡ (π1, . . . , πm) ≡ E(ā′iāi)
−1

E(ā′iyi) where āi ≡
1

n0 − 1

∑
j∈pi

am(xj) (77)

Then simple random assignment (RA) implies:

E
(
yi

∣∣∣{xj}j∈pi

)
=
∑
j∈pi

a(xj) ≈ āiπ (78)

APE(xp) = a(xp)− a(0) ≈
(
am(xp)− am(0)

n0 − 1

)
π (79)

where the approximation errors in (78) and (79) are proportional to the approximation

error in (76).

Returning to the linear in means model (1) from the introduction, Proposition 8

allows that regression to be interpreted as measuring average peer effects for continuous

xi using the approximating function a2(x) = (1,x). Other functional form assumptions

such as discretization can also be interpreted as sieve approximations with a different

choice of approximating function.

Example 13 (Three models of motivation peer effects). Table 4 reports coefficient

estimates from three sieve approximations to a(x) ≡ E (PEi,j |xj = x):

a2(x) =
[
1 x

]
(linear model)

a3(x) =
[
1 I (x < p33) I(x > p66)

]
(discretized model)

a4(x) =
[
1 x (x− p33)I(x > p33) (x− p66) ∗ I(x > p66)

]
(2-knot spline)

where x is the continuous measure of motivation used in Bietenbeck (2025) and pN is its

N th percentile. The linear model is comparable to Bietenbeck (2025) Table 5 and can also

be interpreted as a spline with zero knots. The discretized model is similar to column (1)

of Table 2, but represents a discrete CEF in Table 2 and an approximation to a continuous

CEF here. 2-knot spline coefficients are reported as slopes (π2, π2 + π3, π2 + π3 + π4) for

comparison, and are estimated by applying equation (77).

For comparison, Table 4 also reports approximate predictions for the discrete coun-

terfactuals that are directly estimated in Table 2. The 2-knot spline implies similar
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predictions to the direct estimates, while the linear model predicts smaller effects.

Figure 2 shows the average peer effects function APE(·) for each model, derived

by applying equation (79) to the regression results, and Table 4 reports the associated

marginal effects ∂APE(xp)
∂xp . The 2-knot spline results suggest that the marginal impact of

a more motivated peer is high in the middle of the motivation distribution, and is low

or even negative in the tails. Motivation scores are self-reported, so scores in the tails

could be driven by non-classical measurement error, and only weakly related to actual

motivation. This feature cannot be captured by the linear model.

Reading score Math score
(1) (2) (3) (4) (5) (6)

Peer average motivation 0.082∗∗∗ 0.039
(0.024) (0.032)

Share low-motivation (LM) peers −0.433∗∗ −0.282
(< 33rd percentile) (0.171) (0.189)

Share high-motivation (HM) peers 0.221 0.077
(> 66th percentile) (0.218) (0.283)

Peer motivation, 2-knot linear spline:
Low-motivation peer 0.015 -0.012

(0.046) (0.047)
Medium-motivation peer 1.031∗∗ 0.769

(0.448) (0.515)
High-motivation peer -0.249 -0.224

(0.315) (0.434)
Sample size (# students) 2,185 2,185 2,185 2,196 2,196 2,196
# clusters 147 147 147 148 148 148
Avg effect of LM peers:

replacing MM peers -0.018∗∗∗ -0.029∗∗ -0.030∗∗∗ -0.009 -0.019 -0.018∗

replacing HM peers -0.032∗∗∗ -0.044∗∗∗ -0.039∗∗∗ -0.015 -0.024 -0.020
Marginal effect of more motivated peer:

replacing LM peers 0.005∗∗∗ 0.001 0.003 -0.001
replacing MM peers 0.005∗∗∗ 0.069∗∗ 0.003 0.051
replacing HM peers 0.005∗∗∗ -0.017 0.003 -0.015

Model selection:
AIC statistic 5626.07 5623.97 5624.05 5663.50 5662.79 5663.83
Leave-one-out MSE 0.8933 0.8924 0.8928 0.8967 0.8963 0.8964
JMA weight 0.3760 0.6240 0.1336 0.8664

Table 4: Sieve model estimates of motivation peer effects in Project STAR. Additional control
variables include a school/grade fixed effect. Cluster-robust standard errors in parentheses,
∗ = 0.1, ∗∗ = 0.05, ∗∗∗ = 0.01. See Appendix A.2 for additional details.

Although Proposition 8 facilitates the interpretation of ad hoc peer effects regressions,

a more systematic approach will have better econometric properties. Sieve models are
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typically estimated by selecting the approximating function am(·) from a family of basis

functions such as polynomials or splines that can reproduce an arbitrary smooth function

as m → ∞, and selecting the order m using a data-driven procedure that increases in

the sample size. This procedure will consistently estimate the unrestricted model under

conditions described in Hansen (2014). The basis function family is usually chosen for

convenience and desired properties such as differentiability and tail behavior. The order

can be selected acccording to an information criterion or by cross-validation. Model

averaging is an alternative to model selection that is more efficient and less sensitive

to small performance variations across dissimilar models. Hansen (2014) discusses the

relative merits of different selection criteria and averaging procedures.

Example 14 (Model selection for classmate motivation). Table 4 reports two model

selection criteria: the Akaike Information Criterion (AIC) statistic and the mean squared

prediction error estimated by leave-one-out cross-validation. The 2-knot spline beats

the linear model by both criteria for reading and by cross-validation for math, while the

linear model is preferred by AIC for math. The discretized model performs best of all.

Table 4 also reports optimal jackknife model averaging (JMA) weights for the spline

models (Hansen and Racine, 2012; Hansen, 2014). 1-knot and 3-knot splines were also

considered but received zero weight; see Appendix A.2 for details. The thick line in

Figure 2 shows the JMA estimate of average peer effects, which preserves but smooths

out the nonlinear pattern shown in the 2-knot spline.

Figure 2: Average peer effects for peer motivation: linear model (purple), 3-category discretized
model (red), 2-knot linear spline (blue), and jackknife model average of linear splines (thick
black line). By construction, APE(0) = 0 in all models.
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6 Conclusion

This paper establishes a simple framework for thinking about contextual effects when

estimating a complete model is infeasible, clarifies common empirical procedures, and

suggests simple extensions to those procedures. Returning to the issues raised in the

introduction, the results here have several implications for empirical research.

The first implication is that simple specifications using categorical explanatory

variables can have a clear and robust causal interpretation. A minimal specification

that is linear in the peer group average of a a single binary characteristic (high/low

income, black/white, male/female, etc.) measures the difference in average peer effects

across the two categories under straightforward and testable assumptions. A researcher

can choose the characteristic(s) based on their research question, and researchers with

the same data but other research questions can choose other characteristics. In contrast,

a regression with many related peer characteristics is difficult to interpret without

imposing the implausible assumption that the regression model is complete.

The second implication is that specific extensions to this simple model allow the

researcher to address additional causal questions or relax some assumptions. Adding

an interaction term allows the researcher to estimate conditional peer effects and

reallocation effects, or to relax the assumption of simple random assignment. Binning can

be used to relax the assumption of peer separability and estimate group effects while still

maintaining a tractable regression model. Discretization or sieve approximations can be

used to handle continuous and/or high-dimensional characteristics while still exploiting

the dimension-reducing implications of peer separability and random assignment.

A third implication is that the randomization mechanism is important in ways

that are not often appreciated. For example, average peer effects describe the effect of

replacing a randomly selected peer from one category with a randomly selected peer

from another category. This effect does not in general correspond to the precise effect

of replacing any peer from one category with any peer from the other category. As a

result, not all potentially interesting reallocation effects can be identified.

Simple models and methods are central to empirical research, and are the focus of

this paper. However, the framework developed here provides avenues for further research

that develops or applies more novel econometric methods. For example, the ability to

analyze treatment effect heterogeneity along any dimension of interest opens up the risk

of unstructured regression fishing. Tools for systematically analyzing treatment effect

heterogeneity (Wager and Athey, 2018) can be adapted to this setting, and may be useful

in constructing robust data-driven predictors of peer and group effects. A second avenue

for further research is to investigate more complex social networks than the group-based
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structure considered here. Preliminary work in progress suggests that many results in

this paper extend to a general network structure. Other work in progress considers the

commonly used multiple-cohort research design (Hoxby, 2000), in which students are

assumed to be randomly assigned to entry/birth cohorts within non-randomly selected

schools. This feature substantially constrains the set of counterfactual comparisons that

can be made in the absence of strong restrictions on potential outcomes.
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Not-for-publication Appendix

A Application details

As described in Section 2 of the main text, the analysis of motivation peer effets is

adapted from Bietenbeck (2025) using the replication package provided by its author

(Bietenbeck, 2024). The analysis of gender peer effects uses the same sample, peer group

definition, and other methodological choices to facilitate comparison.

Bietenbeck makes the following methodological choices, which I take as given:

• The treated population is students who enter in grades 2 or 3.

• The peer group is returning students in the treated student’s entry-grade classroom.

• Nonrandom school selection is addressed by including school/grade fixed effects.

• Peer motivation is measured using the peer’s motivation score in the previous

grade, in standard deviation units. Treated students do not have previous-grade

motivation scores since they were not present in the previous grade. As a result,

the treated student’s own motivation is not included in any regression models.

A few additional modifications are made to simplify the analysis and fit it into this

paper’s framework:

• Peer characteristics other than motivation are dropped from the model.

– This allows for the coefficient on peer motivation to be interpreted as the

average peer effect associated with peer motivation.

• Class size and characteristics of the treated student (other than gender in some

regressions) are dropped from the model.

– This simplifies the model. As discussed in the main text, their inclusion or

exclusion does not affect identification since students are randomly assigned

to classrooms.

• Classroom size is taken to be n0 = 16 when calculating average and conditional

peer effects. This is based on the median number of peers in the data.

Table 5 below shows that these modifications do not have a substantial effect on

the results. Column (1) is a direct replication of column (1) in Bietenbeck’s Table 5,

while column (3) is a direct replication of column (1) in Bietenbeck’s Table 7. Column

(2) replicates column (1) in Table 4 of this paper, while column (4) replicates column

(1) in Table 2 and column (5) replicates column (2) in Table 4. Columns (6)–(10) have

a similar interpretation for math scores.
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Reading score Math score
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Peer avg motivation 0.081∗∗∗ 0.082∗∗∗ 0.036 0.039
(0.023) (0.024) (0.032) (0.032)

Share with low motivation −0.429∗∗∗ −0.426∗∗ −0.433∗∗∗ -0.222 -0.281 -0.282
(< 33rd percentile) (0.157) (0.167) (0.171) (0.174) (0.189) (0.189)

Share with high motivation 0.136 0.220 0.221 0.074 0.076 0.077
(> 66th percentile) (0.187) (0.213) (0.218) (0.295) (0.283) (0.283)

Additional controls:
School/grade fixed effect Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Own gender Yes No Yes Yes No Yes No Yes Yes No
Other demographics Yes No Yes No No Yes No Yes No No
Class size Yes No Yes No No Yes No Yes No No
Peer achievement No No Yes No No No No Yes No No
Peer demographics No No Yes No No No No Yes No No

Sample size (# students) 2,185 2,185 2,185 2,185 2,185 2,196 2,196 2,196 2,196 2,196
# clusters 147 147 147 147 147 148 148 148 148 148

Table 5: Motivation peer effects in Project STAR, comparison of results with Bietenbeck
(2025). Cluster-robust standard errors in parentheses, ∗ = 0.1, ∗∗ = 0.05, ∗∗∗ = 0.01.

A.1 Reallocation effect details

This section provides additional calculation details for the reallocation effect results in

Sections 4.3 and 5.4

Example 15 below gives a specific GR function that implements each reallocation

mechanism described in Example 5. Each function uses the random vector ρ to randomly

sort individuals and then sequentially fills classrooms from the sorted list(s) to produce

the desired properties.

Example 15 (Reallocation mechanisms). The reallocation mechanisms described in

Example 5 can be implemented as follows:

• The evenly-divided mechanism can implemented by:

giR(X,ρ) ≡

ceil
(
ri1
8

)
if ri1 ≤ 8g∗

ceil
(
ri2
16

)
if ri1 > 8g∗

(80)

where ri1 ≡
∑I

j=1 I (xj = xi) I (ρj ≤ ρi), g
∗ ≡ floor

(
min(

∑I
i=1 xi,

∑I
i=1 1−xi)

8

)
, and

ri2 =
∑I

j=1 I (rj1 > 8g∗) I (ρj ≤ ρi). That is, we sort the boys and girls separately

based on ρi, fill in group 1 with the first 8 boys and the first 8 girls from their

respective lists, etc. The realized X will not necessarily have an equal number of

boys and girls, so there may be one or two (G− g∗) “spillover” classrooms that

are not evenly mixed.
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• The 6/10 divided mechanism can implemented by:

giR(X,ρ) ≡

ceil
(

ri
10−4xi

)
if ri ≤ (10− 4xi)g

∗

min
(
g∗ + ceil

(
ri−(10−4xi)g

∗

6+4xi

)
, G
)

if ri > (10− 4xi)g
∗

(81)

where ri ≡
∑I

j=1 I (xj = xi) I (ρj ≤ ρi), and g∗ ≡ floor
(
10G−

∑I
i=1 xi

4

)
. Classroom

G is a spillover classroom when
∑I

i=1 xi is not a multiple of 16.

• The random mechanism can implemented by:

giR(X,ρ) ≡ ceil
( ri
16

)
(82)

where ri ≡
∑I

j=1 I (ρj ≤ ρi).

• The 60/40 random mechanism can implemented by:

giR(X,ρ) ≡ ceil
(ri1
16

)
(83)

where ri1 =
∑I

j=1 ri2(1−rj2)+I (ri2 = rj2) I (ρj ≤ ρi) and ri2 = I (ρI+i ≤ (0.4 + 0.2xi)).

Classroom g∗ ≡ ceil
(∑I

i=1 ri2/16
)
is a spillover classroom when

∑I
i=1 ri2 is not

a multiple of 16.

• The single-gender mechanism can implemented by:

giR(X,ρ) ≡ ceil
( ri
16

)
(84)

where ri ≡
∑I

j=1 xi(1− xj) + I (xj = xi) I (ρj ≤ ρi). This mechanism will produce

one mixed-gender spillover classroom when the number of boys is not a multiple

of 16.

Note that the spillover classroom(s) account for a negligible proportion of students as

the population increases.

Example 16 below shows how the net changes (∆x and/or ∆z) required to calculate

the reallocation effects in Table 3 are determined.

Example 16 (Reallocation effect calculations, part 1). The net changes defined in

equations (69) and (72) of Proposition 7 are calculated for each example as follows:

• In the evenly-divided mechanism, all girls have 8 male classmates out of 15, and
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all boys have 7 out of 15. Therefore:

∆x01 = E(x̄i|xi = 0)− µ1 ≈ 8/15− 0.5 ≈ 0.033 (evenly-divided)

∆x11 = E(x̄i|xi = 1)− µ1 ≈ 7/15− 0.5 ≈ −0.033

zi ≡
[
I (n0x̄i ≈ 7) I (n0x̄i ≈ 8)

]
(evenly-divided bins)

∆z01 = 0−M(7/15, 15, 0.5) ≈ −0.196 (evenly-divided bin changes)

∆z02 = 1−M(8/15, 15, 0.5) ≈ 0.804

∆z11 = 1−M(7/15, 15, 0.5) ≈ 0.804

∆z12 = 0−M(8/15, 15, 0.5) ≈ −0.196

where M(·) is the multinomial/binomial probability defined in equation (35).

• In the 6/10 divided mechanism, 10/16 of girls have 6 male classmates out of 15,

6/16 of girls have 10 male classmates, 10/16 of boys have 9 male classmates, and

6/16 have 5 male classmates. Therefore:

∆x01 = E(x̄i|xi = 0)− µ1 ≈
10

16
× 6

15
+

6

16
× 10

15
− 0.5 ≈ 0.0 (6/10 divided)

∆x11 = E(x̄i|xi = 1)− µ1 ≈
10

16
× 9

15
+

6

16
× 5

15
− 0.5 ≈ 0.0

zi ≡
[
I (n0x̄i ≈ 5) I (n0x̄i ≈ 6) I (n0x̄i ≈ 9) I (n0x̄i ≈ 10)

]
(6/10 divided bins)

∆z01 = 0−M(5/15, 15, 0.5) ≈ −0.092 (6/10 divided bin changes)

∆z02 = 10/16−M(6/15, 15, 0.5) ≈ 0.472

∆z03 = 0−M(9/15, 15, 0.5) ≈ −0.153

∆z04 = 6/16−M(10/15, 15, 0.5) ≈ 0.283

∆z11 = 06/16−M(5/15, 15, 0.5) ≈ 0.283

∆z12 = 0−M(6/15, 15, 0.5) ≈ −0.153

∆z13 = 10/16−M(9/15, 15, 0.5) ≈ 0.472

∆z14 = 0−M(10/15, 15, 0.5) ≈ −0.092

• In the random mechanism, x̄i and xi are independent, so E(x̄i|xi) = E(x̄i) = µ1.
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Therefore:

∆x01 = E(x̄i|xi = 0)− µ1 = 0.5− 0.5 = 0 (random)

∆x11 = E(x̄i|xi = 1)− µ1 = 0.5− 0.5 = 0

zi ≡
[
I (n0x̄i ≈ 0) I (n0x̄i ≈ 1) · · · I (n0x̄i ≈ 15)

]
(random bins)

∆zkb = 0 for all k, b (random bin changes)

• In the 60/40 random mechanism, x̄i and xi are independent conditional on class-

room type. Therefore:

E(x̄i|xi = 0) = E(x̄i|xi = 0, type = 60/40)Pr(type = 60/40|xi = 0)

+ E(x̄i|xi = 0, type = 40/60)Pr(type = 40/60|xi = 0)

(85)

≈ (0.6× 0.4) + (0.4× 0.6) ≈ 0.48

E(x̄i|xi = 1) = E(x̄i|xi = 1, type = 60/40)Pr(type = 60/40|xi = 1)

+ E(x̄i|xi = 1, type = 40/60)Pr(type = 40/60|xi = 1)

(86)

≈ (0.6× 0.6) + (0.4× 0.4) ≈ 0.52

which implies:

∆x01 = E(x̄i|xi = 0)− µ1 ≈ 0.48− 0.5 ≈ −0.02 (60/40 random)

∆x11 = E(x̄i|xi = 1)− µ1 ≈ 0.52− 0.5 ≈ 0.02

zi ≡
[
I (n0x̄i ≈ 0) I (n0x̄i ≈ 1) · · · I (n0x̄i ≈ 15)

]
(60/40 random bins)

∆zkb > 0 for all k, b (60/40 random bin changes)

• In the single-gender mechanism, x̄i ≈ xi for all i. Therefore:

∆x01 = E(x̄i|xi = 0)− µ1 ≈ 0− 0.5 ≈ −0.5 (single-gender)

∆x11 = E(x̄i|xi = 1)− µ1 ≈ 1− 0.5 ≈ 0.5

zi ≡
[
I (n0x̄i ≈ 0) I (n0x̄i ≈ 15)

]
(single-gender bins)

∆z01 = 1−M(0/15, 15, 0.5) ≈ 1 (single-gender bin changes)

∆z02 = 0−M(15/15, 15, 0.5) ≈ 0

∆z11 = 0−M(0/15, 15, 0.5) ≈ 0

∆z12 = 1−M(15/15, 15, 0.5) ≈ 1
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Note that these calculations are approximations that ignore the “spillover” classroom(s).

The approximation error will be negligible as long as the classroom size is small relative

to the population.

Example 17 below shows the calculated reallocation effects.

Example 17 (Reallocation effect calculations, part 2). Assuming peer separability, the

results in columns (2) and (6) of Table 1 imply that:

CPE01(n0 − 1) = −0.268 (reading)

CPE11(n0 − 1) = −0.268 + (−0.133) = −0.401

CPE01(n0 − 1) = −0.279 (math)

CPE11(n0 − 1) = −0.279 + (−0.455) = −0.734

Proposition 7 implies implies that:

CRE0 = ∆x01CPE01(n0 − 1) (by (71))

CRE1 = ∆x11CPE11(n0 − 1) (by (71))

ARE = 0.5CRE0 + 0.5CRE1 (by (70))

The estimated reallocation effects in the first panel of Table 3 can then be calculated by

substituting in the ∆x values calculated in Example 16.

The estimated reallocation effects in the second panel of Table 3 can be calculated by

estimating the binned model corresponding to each reallocation, looking up the ∆z values

calculated in Example 16, and applying equations (67) and (68) from Proposition 7. No

estimates are available for the 60/40 random and single-gender reallocations because

they place nonzero weight on bins that are not present in the data.

A.2 Sieve estimate details

For expositional convenience, the sieve results reported in Section 5.5 omit several

calculation details that can be explained more fully here:

1. Table 4 reports linear spline results for zero-knot (linear) and 2-knot cases only.

Table 6 below reports results for these cases along with the 1-knot and 3-knot

cases. As the table shows, the 1-knot and 3-knot models are not selected by either

criterion and receive zero JMA weights for both reading and math.

2. The average peer effects in Figure 2 are calculated by applying equation (79) in
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Proposition 8:

APE(xp) ≈ xpπ2
n0 − 1

(linear model)

APE(xp) ≈


π2

n0−1 if xp < p33

0 if p33 ≤ xp ≤ p66

π3
n0−1 if xp > p66

(discretized model)

APE(xp) ≈


xpπ2+p33π3

n0−1 if xp < p33
xp(π2+π3)

n0−1 if p33 ≤ xp ≤ p66
xp(π2+π3+π4)−p66π4

n0−1 if xp > p66

(2-knot spline)

3. The marginal effects in Table 4 are calculated by taking derivatives:

∂APE(xp)

∂xp
≈ π2

n0 − 1
(linear model)

∂APE(xp)

∂xp
≈


π2

n0−1 if xp < p33

π2+π3
n0−1 if p33 < xp < p66

π2+π3+π4
n0−1 if xp > p66

(2-knot spline)

The discretized model is flat or non-differentiable everywhere, and so does not

have meaningful marginal effects.

4. Table 4 also reports the effect of replacing a randomly-selected medium-motivation

peer with a random low-motivation peer:

APEmedium→low ≡ E(APE(xi)|xi < p33)− E(APE(xi)|p33 < xi < p66) (87)

≈ (E(am(xi)|xi < p33)− E(am(xi)|p33 < xi < p66))π (88)

as well as the effect of replacing a random high-motivation peer with a random

low-motivation peer:

APEhigh→low ≡ E(APE(xi)|xi < p33)− E(APE(xi)|xi > p66) (89)

≈ (E(am(xi)|xi < p33)− E(am(xi)|xi > p66))π (90)

where the conditional expectations are estimated by conditional averages.
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Reading score Math score
(1) (2) (3) (4) (5) (6) (7) (8)

Number of knots 0 1 2 3 0 1 2 3
Peer motivation

< 25th percentile 0.082∗∗∗ 0.079∗∗ 0.015 0.000 0.039 0.039 -0.012 -0.026
(0.024) (0.038) (0.046) (0.051) (0.032) (0.042) (0.047) (0.056)

25th-33rd percentile ↓ ↓ ↓ 0.654 ↓ ↓ ↓ 0.591
(0.623) (0.648)

33rd-50th percentile 1.031∗∗ ↓ 0.769 ↓
(0.448) (0.515)

50th-66th percentile 0.107 ↓ 0.875 0.040 ↓ 0.507
(0.230) (0.802) (0.323) (0.817)

66th-75th percentile ↓ -0.249 ↓ ↓ -0.224 ↓
(0.315) (0.434)

> 75th percentile ↓ -0.326 ↓ -0.233
(0.442) (0.550)

Sample size (# students) 2,185 2,185 2,185 2,185 2,196 2,196 2,196 2,196
# clusters 147 147 147 147 148 148 148 148
Model selection:

AIC statistic 5626.07 5628.06 5624.05 5625.58 5663.50 5665.50 5663.83 5665.82
Leave-one-out MSE 0.8933 0.8941 0.8928 0.8936 0.8967 0.8975 0.8964 0.8974
JMA weight 0.3760 0.0000 0.6240 0.0000 0.1336 0.0000 0.8664 0.0000

Table 6: Linear spline estimates of motivation peer effects in Project STAR, with 0 to 3 knots.
Additional control variables include a school/grade fixed effect. Cluster-robust standard errors
in parentheses, ∗ = 0.1, ∗∗ = 0.05, ∗∗∗ = 0.01.
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B Additional results

This section reports additional results that are omitted from the main text in the

interest of clarity and space.

B.1 Estimation and inference

The identification results in Section 5 are constructive and suggest simple plug-in

estimators that are easily implemented in standard statistical packages. This section

provides an informal discussion of estimation and inference in this setting.

B.1.1 Estimating peer and group effects

Suppose the researcher has a sample of N observations on (yi,xi, x̄i) from a large

population that satisfies the model assumptions. Sampling models vary in the applied

literature, so rather than specifying the details of the sampling scheme we simply assume

it satisfies all conditions required for:

√
N
(
ψ̂ −ψ

)
D→ N(0,Σ) (91)

where ψ ≡ (µ,α,β,γ, δ,λ) is a vector of previously-defined population means and best

linear predictor coefficients, and ψ̂ ≡ (µ̂, α̂, β̂, γ̂, δ̂, λ̂) is a consistent and asymptotically

normal estimator of ψ. In most applications, the researcher will have a cluster sample

of size N = n0G constructed from data on all n0 members of G randomly selected

groups, µ̂ will be the sample average of xi, and (α̂, β̂, γ̂, δ̂, λ̂) will be the OLS regression

coefficients. In other applications, the researcher may observe data on (yi,xi) for a

random sample of individuals, each of whom can be linked to some aggregate data

source such as census tract characteristics to construct x̄i.

If peers are randomly assigned, Propositions 4 and 5 show that peer and group

effects correspond to best linear predictor coefficients or linear combinations of those

coefficients, and can therefore be estimated by:

ÂPEℓ =
α̂1ℓ

n0 − 1
if (PS, RA) (92)

ĈPEkℓ =
β̂2ℓ + β̂3kℓ
n0 − 1

if (PS, RA) (93)

ÂGEb = γ̂1b if (RA) (94)

ĈGEkb = δ̂2b + δ̂3kb if (RA) (95)
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With stratified random assignment, peer and group effects can be expressed as linear

combinations of best linear predictor coefficients or as weighted averages of those

coefficients. As a result, they can be estimated by:

ÂPEℓ =
K∑
k=0

µ̂k
β̂2ℓ + β̂3kℓ
n0 − 1

if (PS, SA) (96)

ĈPEkℓ =
β̂2ℓ + β̂3kℓ
n0 − 1

if (PS, SA) (97)

ÂGEb =

K∑
k=0

S∑
s=1

µ̂k

(
wG
sb(µ̂)− wG

s0(µ̂)
) (

λ̂2s + λ̂3ks

)
if (SA) (98)

ĈGEkb =
S∑

s=1

(
wG
sb(µ̂)− wG

s0(µ̂)
) (

λ̂2s + λ̂3ks

)
if (SA) (99)

Five of these eight estimators are just linear combinations of OLS coefficients, so

the researcher can apply standard cluster-robust asymptotic inference procedures to

construct standard errors and confidence intervals, or to perform hypothesis tests.

Inference is slightly more complicated for the three estimators that include weights

based on µ̂, as their asymptotic variance depends on the joint distribution of µ̂ and

the regression coefficients. A straightforward general approach is to define ψ̂ as the

just-identified GMM estimator7 for the vector of moment conditions:

E




xi − µ
yi − α0 − x̄iα1

x′
i(yi − α0 − x̄iα1)

etc.


 = 0 (100)

and Σ̂ as the associated (cluster-robust) GMM variance matrix. Under the usual GMM

regularity conditions:

Σ̂
P→ Σ (101)

The parameter (vector) of interest can then be defined as θ = θ(ψ) for some differentiable

function θ(·), and its estimator can be defined as θ̂ = θ(ψ̂). Then θ̂ has the asymptotic

distribution: √
N
(
θ̂ − θ

)
D→ N(0, (∇θ(ψ))Σ(∇θ(ψ))′) (102)

where ∇θ(ψ) is the Jacobian matrix of θ(ψ), and the asymptotic variance can be

7Note that the GMM estimator here is identical to the OLS estimator; the purpose of applying GMM
here is to estimate the full Σ matrix including the asymptotic covariance of µ̂ with the regression coefficients
using commonly-available tools.
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estimated:

(∇θ(ψ̂))Σ̂(∇θ(ψ̂))′ P→ (∇θ(ψ))Σ(∇θ(ψ))′ (103)

Similarly, a hypothesis of the form θ(ψ) = 0 can be tested using the Wald statistic:

H0 : θ(ψ) = 0 =⇒ θ(ψ̂)
′
(
(∇θ(ψ̂))Σ̂

(
∇θ(ψ̂)

)′)−1

θ(ψ̂)
D→ χ2(r) (104)

where r is the number of restrictions imposed by the null. Each of these steps is standard,

and can be implemented by commonly-available software (e.g., the gmm, nlcom, and

testnl commands in Stata).

Estimators based on sieve or other flexible approximations to the CEF can be

constructed in a similar matter, and their asymptotic properties follow from results in

Hansen (2014).

B.1.2 Estimating reallocation effects

Proposition 7 provides a starting point for estimating reallocation effects by a plug-in

method:

ÂRE(GR) =

0 if (PS, OS)∑K
k=0 µ̂kĈREk(GR) if (PS, SA) or (singletons, SA)

(105)

ĈREk(GR) =


∑K

ℓ=1∆x̄kℓ(GR, µ̂)ĈPEkℓ(n0 − 1) if (PS, SA)∑B
b=1∆zkb(GR, µ̂)ĈGEkb if (singletons, SA)

(106)

where:

∆x̄kℓ(GR, µ̂) ≡ E

(
x̄iℓ (X,GR(T,G,ρ))

∣∣∣∣xi = ek,

∑
j ̸=i xj

I − 1
= µ̂

)
− µ̂ℓ (107)

∆zkb(GR, µ̂) ≡ Pr

(
x̄i(X,GR(T,G,ρ)) ∈ Sb

x̄

∣∣∣∣xi = ek,

∑
j ̸=i xj

I − 1
= µ̂

)
− Pr

(
x̄i(p̃) ∈ Sb

x̄

∣∣∣∣xi = ek,

∑
j ̸=i xj

I − 1
= µ̂

) (108)

Both ∆x̄kℓ(GR, µ̂) and ∆zkb(GR, µ̂) can be calculated by enumeration, or approx-

imated by simulation. The asymptotic properties of the estimators defined in (105)

and (106) depend on the specific reallocation mechanism GR chosen by the researcher,

and how the resulting value of ∆x̄kℓ(GR, µ̂) and/or ∆zkb(GR, µ̂) depends on µ̂. For

example, the delta method can be appplied if ∆x̄kb(GR, µ̂) is a differentiable function

of µ̂.
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B.2 Variable group size and post-assignment shocks

To simplify exposition, the main results in this paper are established under the assump-

tion that there are no post-assignment shocks (equation (8)) and that group size is

constant (Assumption 6). This section relaxes those assumptions.

To accommodate post-assignment shocks, let ϵ ≡ (η,ν) ⊥⊥ T,G, where η ∈ RI is a

vector of IID individual-level (ηi affects individual i) shocks with finite support Sη and

ν ∈ RG is a vector of IID group-level (νg affects all individuals in group g) shocks with

finite support Sν . For convenience, assume that both Sη and Sν include zero. Replace

equation (5) with:

Y ≡


y1
...

yI

 ≡


y1 (T,G, ϵ)

...

yI (T,G, ϵ)

 ≡ Y(T,G, ϵ) where ϵ ⊥⊥ T,G (5′)

and replace equation (8) in Assumption 1 with:

yi(T,G, ϵ) = y
(
τi, {τj}gi=gj

, ϵi

)
(8′)

where ϵi ≡ (ηi, νgi). The model in the main text can be interpreted as a special case of

this model in which ϵ is constant (Sη = Sν = {0}) or does not affect the outcome.

With variable group size, the size of group g is a random variable ng = n(g,G). Let:

fn(n) ≡ Pr(ngi = n|ngi ≥ 2) (11′)

be the probability distribution of group size across individuals, excluding those individu-

als who have no peers, and let Sn ≡ {n ∈ N : fn(n) > 0} be the associated support. The

model in the main text can be interpreted as a special case in which fn(n) = I (n = n0).

Given these modifications to the main model, several definitions can be generalized

accordingly.

Definition 16 (Potential outcomes). Given Assumption 1, individual i’s potential

outcome function is defined as:

yi(p) ≡ y
(
τi, {τj}j∈p , ϵi

)
(15′)

where p is any subset of I \ {i}.

Definition 17 (Average peer effect). Given Assumptions 1 and 5, the average peer
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effect in groups of size n ∈ Sn for peers with characteristics xp ∈ Sx is:

APE(xp, n) ≡ E
(
yi({j} ∪ p̃)− yi(

{
j′
}
∪ p̃)

∣∣xj = xp,xj′ = e0
)

(16a′)

where p̃ is a purely random draw of n− 2 peers from I \ {i, j, j′}, and the average peer

effect of peers with characteristics xp is:

APE(xp) ≡
∑
n∈Sn

APE(xp, n)fn(n) (16b′)

When xi is discrete (DC), the average peer effect from peers of observed type ℓ is:

APEℓ(n) ≡ APE(eℓ, n) (17a′)

APEℓ ≡
∑
n∈Sn

APEℓ(n)fn(n) (17b′)

where APE(·) is as defined in equation (16a′).

Definition 18 (Conditional peer effect). Given Assumptions 1 and 5, the conditional

peer effect in groups of size n ∈ Sn from peers with characteristics xp ∈ Sx on treated

individuals with characteristics xo ∈ Sx is:

CPE(xo,xp, n) ≡ E
(
yi ({j} ∪ p̃)− yi

({
j′
}
∪ p̃
)∣∣xi = xo,xj = xp,xj′ = e0

)
(18a′)

where p̃ is a purely random draw of n− 2 peers from I \ {i, j, j′}, and the conditional

peer effect of peers with characteristics xp on treated individuals with characteristics xo

is:

CPE(xo,xp) ≡
∑
n∈Sn

CPE(xo,xp, n)fn(n) (18b′)

When xi is discrete (DC), the conditional peer effect is:

CPEkℓ(n) ≡ CPE(ek, eℓ, n) (19a′)

CPEkℓ ≡
∑
n∈Sn

CPEkℓ(n)fn(n) (19b′)

where CPE(·, ·) is as defined in equation (18a′).

The original definitions in the main text are a special case of these definitions:

• Equation (11′) applies with fn(n) = I (n = n0) and Sn = {n0}.

• Equations (16a′) and (16b′) reduce to equation (16).
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• Equations (17a′) and (17b′) reduce to equation (17).

• Equations (18a′) and (18b′) reduce to equation (18).

• Equations (19a′) and (19b′) reduce to equation (19).

When group size exhibits nontrivial variation, a researcher can choose to report APEℓ(n)

for selected values of n or to average across the group size distribution to get APEℓ.

Group effects can also be generalized, with the main complication being the absence

of a natural base group.

Definition 19 (Group effects). Given Assumption 1, the average group effect of a

peer group with characteristics xp ∈ S{x} is:

AGE(xp) ≡ E

yi(p̃)− yi(q̃)

∣∣∣∣∣∣ {xj}j∈p̃ = xp,

xj = e0 for all j ∈ q̃

 (22′)

the average group effect of a bin b peer group under the binning scheme z(·) is:

AGEb ≡ E
(
yi(p̃)− yi(q̃)

∣∣∣z({xj}j∈p̃
)
= eb, z

(
{xj}j∈p̃

)
= e0

)
(23′)

and the associated conditional group effects are:

CGE(xo,xp) ≡ E

yi(p̃)− yi(q̃)

∣∣∣∣∣∣xi = xo, {xj}j∈p̃ = xp

xj = e0 for all j ∈ q̃

 (24′)

CGEkb ≡ E

yi(p̃)− yi(q̃)

∣∣∣∣∣∣
xi = ek, z

(
{xj}j∈p̃

)
= eb

z
(
{xj}j∈p̃

)
= e0

 (25′)

where ñp and ñq are independent random draws from fn and p̃ and q̃ are independent

random draws of ñp − 1 and ñq − 1 peers from I \ {i}.

Definition 20 (Peer separability). Given Assumption 1, outcomes are peer-separable

(PS′) if the effect of replacing one peer with another does not depend on one’s other

peers:

y
(
τi,
{
τ ′j , τ

}
, ϵ
)
− y (τi, {τj , τ} , ϵ) = y

(
τi,
{
τ ′j , τ

′} , ϵ)− y
(
τi,
{
τj , τ

′} , ϵ) (PS′)

for any a, b, b′ ∈ T and τ , τ ′ ∈ MT such that |τ | = |τ ′|, and for all ϵ ∈ Sϵ.

Definition 21 (Own separability). Given Assumption 1, outcomes are own-separable

(OS′) if the effect of replacing one peer group with another does not depend on one’s
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own type:

y
(
τi,
{
τ ′} , ϵ)− y (τi, {τ} , ϵ) = y

(
τ ′i ,
{
τ ′} , ϵ′)− y

(
τ ′i , {τ} , ϵ′

)
(OS′)

for all a, a′ ∈ T , all τ , τ ′ ∈ MT and all ϵ, ϵ′ ∈ Sϵ.

Note that both sides of equation (PS′) refer to the same treated individual, so both

sides also have the same shocks. In contrast, each side of equation (OS′) refers to a

different treated individual, so each side has different shocks.

Given these modifications, Propositions 9–12 and Lemma 2 show that the results in

the main text generalize in a straightforward manner.

Proposition 9 (Aggregation with variable group size and post-assignment shocks).

Given Assumptions 1–5 and discrete characteristics (DC):

1. Average effects are a weighted average of conditional effects:

APEℓ(n) =
K∑
k=0

µkCPEkℓ(n) (109)

APEℓ =

K∑
k=0

µkCPEkℓ (30′)

AGEb =
K∑
k=0

µkCGEkb (31′)

where µk = E(xik) = Pr(xi = ek) as defined earlier.

2. Binned group effects are a weighted average of saturated group effects:

AGEb =
K∑
k=0

S∑
s=1

µk

(
wG
sb(µ)− wG

s0(µ)
)
CGES

ks (33′)

CGEkb =

S∑
s=1

(
wG
sb(µ)− wG

s0(µ)
)
CGES

ks (34′)

where CGES
ks is the conditional group effect for bin s of the saturated variable zSi ,

wG
sb(µ) =

∑
xp∈S{x} M (x̄ (xp) , |xp|,µ) I

(
zS (x̄ (xp)) = es

)
I (z (xp) = eb) fn(|xp|+ 1)∑

xp∈S{x} M(x̄ (xp) , |xp|,µ)I (z (xp) = eb) fn(|xp|+ 1)

(35′)
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is a weighting function, and:

M(x̄, n,µ) ≡ n!∏K
k=0(nx̄·k)!

K∏
k=0

µnx̄·k
k (36′)

is the probability of drawing the value nx̄ from a multinomial distribution with n

trials and categorical probability vector µ.

3. Peer effects are a weighted average of saturated group effects:

APEℓ =
K∑
k=0

S∑
s=1

µk

(
wP
sℓ(µ)− wP

s0(µ)
)
CGES

ks (37′)

CPEkℓ =
S∑

s=1

(
wP
sℓ(µ)− wP

s0(µ)
)
CGES

ks (38′)

where:

wP
sℓ(µ) ≡

∑
xp∈Mx

M (x̄ (xp) , |xp|,µ) I
(
zS (xp ∪ {eℓ}) = es

)
fn(|xp|+ 2) (39′)

is a weighting function and Mx is the set of multisets on Sx.

Lemma 2 (Implications of stratified random assignment with variable group size and

post-assignment shocks). Given Assumptions 1–5 and discrete characteristics (DC),

stratified random assignment (SA) implies:

E(yi|xi = xo, x̄i = xp, ngi = n) = E
(
yi(p̃)

∣∣∣xi = xo, x̄
(
{xj}j∈p̃

)
= xp

)
(42′)

where p̃ is a purely random draw of (n− 1) peers from I \ {i}.

Proposition 10 (Implications of separability with variable group size and post-as-

signment shocks). Given Assumptions 1–5, let PE : T 2 × R2 × {2, 3, . . .} → R be

defined:

PE(a, b, e, n) ≡
y
(
a,
{
b[n−1]

}
, e
)

n− 1
(43′)

where b[n−1] is n− 1 copies of b. If outcomes are peer-separable (PS), then for any p of

size |p| ≥ 1:

yi(p) =
∑
j∈p

PE(τi, τj , ϵi, |p|+ 1) for all p ⊂ I \ {i} (44′)

Conditional and average peer effects can also be expressed in terms of these pairwise
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latent variables:

CPE(xo,xp, n) = E (PE(τi, τj , ϵi, n)|xi = xo,xj = xp)

− E (PE(τi, τj , ϵi, n)|xi = xo,xj = e0)

for all n ≥ 2 (45′)

APE(xp, n) = E (PE(τi, τj , ϵi, n)|xj = xp)

− E (PE(τi, τj , ϵi, n)|xj = e0)

for all n ≥ 2 (46′)

for all xo,xp ∈ Sx.

Proposition 11 (Identification of peer effects with variable group size and post-assign-

ment shocks). Given Assumptions 1–5 and discrete characteristics (DC):

1. Simple random assignment (RA) and peer separability (PS) imply that peer effects

are identified from the joint distribution of (yi,xi, x̄i, ngi):

APEℓ(n) =
αn
1ℓ

n− 1
for all n ∈ Sn \ {0, 1} (49a′)

APEℓ =
∑
n∈Sn

αn
1ℓ

n− 1
fn(n) (49b′)

CPEkℓ(n) =
βn
2ℓ + βn

3kℓ

n− 1
for all n ∈ Sn (50a′)

CPEkℓ =
∑
n∈Sn

βn
2ℓ + βn

3kℓ

n− 1
fn(n) (50b′)

where αn = (αn
0 ,α

n
1 ) and βn = (βn

0 ,β
n
1 ,β

n
2 ,β

n
3 ) are the vectors of best linear

predictor coefficients:

L(yi|xi, x̄i;ngi) ≡
∑
n∈Sn

(αn
0 + x̄iα

n
1 )I (ngi = n) (51′)

L(yi|xi, x̄i,x
′
ix̄i;ngi) ≡

∑
n∈Sn

(βn
0 + xiβ

n
1 + x̄iβ

n
2 + xiβ

n
3 x̄

′
i)I (ngi = n) (52′)

in the sub-population of individuals8 with ngi = n.

2. Stratified random assignment (SA) and peer separability (PS) imply that peer

8That is: α(n) ≡ E(d′
idi|ngi = n)

−1
E(d′

iyi|ngi = n) where di ≡ (1,xi, x̄i).
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effects are identified from the joint distribution of (yi,xi, x̄i, ngi):

APEℓ(n) =
K∑
k=0

µk
βn
2ℓ + βn

3kℓ

n− 1
(53a′)

APEℓ =
∑
n∈Sn

K∑
k=0

µk
βn
2ℓ + βn

3kℓ

n− 1
fn(n) (53b′)

CPEkℓ(n) =
βn
2ℓ + βn

3kℓ

n− 1
(54a′)

CPEkℓ =
∑
n∈Sn

βn
2ℓ + βn

3kℓ

n− 1
fn(n) (54b′)

where (βn
2ℓ, β

n
3kℓ) are defined as in equation (52′).

Proposition 12 (Identification of group effects with variable group size and post-as-

signment shocks). Given Assumptions 1–5 and discrete characteristics (DC):

1. Simple random assignment (RA) implies that binned group effects are identified

from the joint distribution of (yi,xi, zi):

AGEb = γ1b (55′)

CGEkb = δ2b + δ3kb (56′)

where (γ1b, δ2b, δ3kb) are coefficients from the best linear predictors:

L(yi|xi, zi) ≡ γ0 + ziγ1 (57′)

L(yi|xi, zi,x
′
izi) ≡ δ0 + xiδ1 + ziδ2 + xiδ3z

′
i (58′)

i.e., γ1b is element b of γ1, δ2b is element b of δ2, δ3kb is the element in row k and

column b of δ3 for all k > 0, and δ30b ≡ 0 for all b.

2. Stratified random assignment (SA) implies that saturated group effects are identified

from the joint distribution of (yi,xi, z
S
i ):

CGES
ks = λ2s + λ3ks (59′)

where (λ2s, λ3ks) are coefficients from the best linear predictor:

L(yi|xi, z
S
i ,x

′
iz

S
i ) ≡ λ0 + xiλ1 + zSi λ2 + xiλ3z

S
i
′

(60′)

i.e., λ2s is element s of λ2, λ3ks is the element in row k and column s of λ3 for

all k > 0, and λ30s ≡ 0 for all s. Peer effects and binned group effects are also
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identified:

AGEb =
K∑
k=0

S∑
s=1

µk

(
wG
sb(µ)− wG

s0(µ)
)
(λ2s + λ3ks) (61′)

CGEkb =

S∑
s=1

(
wG
sb(µ)− wG

s0(µ)
)
(λ2s + λ3ks) (62′)

APEℓ =

K∑
k=0

S∑
s=1

µk

(
wP
sℓ(µ)− wP

s0(µ)
)
(λ2s + λ3ks) (63′)

CPEkℓ =
S∑

s=1

(
wP
sℓ(µ)− wP

s0(µ)
)
(λ2s + λ3ks) (64′)

where wG
sb(·) and wP

sℓ(µ) are defined in Proposition 9.

In principle, the group size specific regression coefficients described in Propositions 11

and 12 are identified and can be estimated from data by linear regression. However,

estimating such a model is likely to be impractical in most applications. An obvious

alternative is to impose plausible assumptions on how αn varies with n.

Example 18 (Gender peer effects with variable group size). Table 7 below shows

estimates of gender peer effects that account for variations in group size. Each column

shows a different specification for αn and reports selected coefficients and average peer

effect estimates for two selected group sizes APE1(16) and APE1(20) and averaging

over the distribution of group sizes APE1.

• Columns (1) and (6) show results for the regression model:

L(yi|x̄i) = α0 + x̄iα1 (110)

as well as average peer effects APE1(16) =
α1

16−1 , APE1(20) =
α1

20−1 , and APE1 =

α1E
(

1
ngi−1

)
under the assumption (αn

0 ,α
n
1 ) = (α0,α1). This model assumes

that the effect of peer group composition does not vary with peer group size, and

corresponds to the typical handling of group size variation in the literature.

• Columns (2) and (7) show results for the regression model:

L(yi|ngi , (ngi − 1)x̄i) = α00 + α0ngi + (ngi − 1)x̄iα1 (111)

and average peer effects APE1(16) = APE1(20) = APE1 = α1 under the assump-

tion (αn
0 ,α

n
1 ) = (α00+α0n,α1(n−1)). This model assumes that the additive effect

of an individual peer (PE(τi, τj , n)) does not vary with peer group size.
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• Columns (3) and (8) show results for the regression model:

L(yi|ngi , (ngi − 1)x̄i, x̄i) = α00 + α0ngi + (ngi − 1)x̄iα1 + x̄iα2 (112)

and average peer effects APE1(16) = α1 +
α2

16−1 , APE1(20) = α1 +
α2

20−1 and

APE1 = α1 + α2E
(

1
ngi−1

)
under the assumption (αn

0 ,α
n
1 ) = (α00 + α0n,α1(n−

1) +α2). This model nests models (110) and (111).

• Columns (4) and (9) show results for the mostly-unrestricted regression model:

L(yi|ngi , x̄i;ngi) = α00 + α0ngi +
∑
n∈Sn

(x̄iα
n
1 ) I (ngi = n) (113)

and average peer effects APE1(16) =
α16
1

16−1 , APE1(20) =
α20
1

20−1 , and APE =∑
n∈Sn

αn
1

n−1fn(n) under the assumption (αn
0 ,α

n
1 ) = (α00 + α0n,α

n
1 ). This model

allows average peer effects to vary arbitrarily with group size, but restricts the

other coefficients for tractability.

• Columns (5) and (10) show results for the unrestricted regression model:

L(yi|x̄i;ngi) =
∑
n∈Sn

(αn
0 + x̄iα

n
1 ) I (ngi = n) (114)

and average peer effects APE1(16) =
α16
1

16−1 , APE1(20) =
α20
1

20−1 , and APE =∑
n∈Sn

αn
1

n−1fn(n)

As the results show, the first three models produce very similar average peer effects either

for representative peer group sizes or when averaging across the group size distribution.

While the unrestricted model produces highly variable estimates for specific group sizes,

averaging across the size distribution produces results similar to those found in the other

specifications.

B.3 More on approximation and functional form

Section 5.5 in the main text develops a sieve-based method for estimating average peer

effects that exploits the dimension-reducing implications of random assignment and

peer separability while allowing for general (continuous) characteristics. This appendix

shows how similar methods can be applied to more complex cases.
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Reading score Math score
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Share male peers −0.342 -0.670 −0.532∗∗ 0.011
(0.286) (1.012) (0.226) (0.994)

Share male peers x (# peers) −0.019 0.024 −0.037∗∗ −0.038
(0.019) (0.068) (0.015) (0.066)

Share male peers x (15 peers) -0.417 0.211 -0.956∗∗∗ -0.163
(0.346) (0.784) (0.342) (0.765)

Share male peers x (19 peers) -0.023 -1.996∗∗ -0.528 -1.391
(0.434) (0.881) (0.404) (1.064)

Average peer effects:
APE(16) -0.023 −0.019 −0.021 -0.028 0.014 −0.035∗∗ −0.037∗∗ −0.037∗∗ -0.064∗∗∗ -0.011

(0.019) (0.019) (0.019) (0.023) (0.052) (0.015) (0.015) (0.015) (0.023) (0.051)
APE(20) -0.018 −0.019 −0.012 -0.001 -0.105∗∗ −0.028∗∗ −0.037∗∗ −0.037∗ -0.028 -0.073

(0.015) (0.019) (0.023) (0.023) (0.046) (0.012) (0.015) (0.020) (0.021) (0.056)
APE -0.024 −0.019 -0.024 -0.021 -0.037∗ −0.038∗∗ −0.037∗∗ −0.037∗∗ −0.032∗ -0.039∗∗

(0.020) (0.019) (0.020) (0.020) (0.019) (0.016) (0.015) (0.016) (0.017) (0.017)
Additional control variables:

School/grade fixed effect Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Own gender Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
# peers No No Linear Linear Dummy No No Linear Linear Dummy

Sample size (# students) 2,185 2,185 2,185 2,185 2,185 2,196 2,196 2,196 2,196 2,196
# clusters 147 147 147 147 147 148 148 148 148 148

Table 7: Gender peer effects in Project STAR, by size of peer group. Cluster-robust standard
errors in parentheses, ∗ = 0.1, ∗∗ = 0.05, ∗∗∗ = 0.01.

B.3.1 Sieve models for conditional peer effects

The dimension-reducing implications of separability and random assignment can also

be exploited to estimate conditional peer effects. Proposition 13 below extends the sieve

estimator to this case.

Proposition 13 (Sieve model for conditional peer effects). Given Assumptions 1–6

and peer separability (PS), suppose that:

h(xo,xp) ≡ E (PEij |xi = xo,xj = xp ) ≈ hm(xo,xp)ϕ̄m (115)

for some known function hm : R2K → Rm and unknown parameter vector ϕ̄m ≡
E
(
hm(xi,xj)

′hm(xi,xj)
)−1

E
(
hm(xi,xj)

′h(xi,xj)
)−1

. Let:

ϕ ≡ E(h̄′
ih̄i)

−1
E(h̄′

iyi) where h̄i ≡
1

n0 − 1

∑
j∈pi

hm(xi,xj) (116)
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Then simple random assignment (RA) implies:

E
(
yi

∣∣∣xi, {xj}j∈pi

)
=
∑
j∈pi

h(xi,xj) ≈ h̄iϕ (117)

CPE(xo,xp) = h(xo,xp)− h(xo,0) ≈
(
hm(xo,xp)− hm(xo,0)

n0 − 1

)
ϕ (118)

where the approximation errors in (117) and (118) are proportional to the approximation

error in (115).

B.3.2 Sieve models for group effects

Sieve methods can also be used to estimate group effects, providing a practical alternative

to saturated models. The dimension reduction implied by equation (75) is no longer

available in the absence of peer separability, so the unrestricted conditional expectation

function must be directly approximated. Proposition 14 below describes sieve estimators,

but other standard nonparametric regression methods can be used.

Proposition 14 (Sieve model for group effects). Given Assumptions 1–6, let:

a(xp) ≡ E
(
yi

∣∣∣{xj}j∈pi
= xp

)
≈ am(xp)πm (119)

h(xo,xp) ≡ E
(
yi

∣∣∣xi = xo, {xj}j∈pi
= xp

)
≈ hm(xo,xp)ϕm (120)

for known functions am : S{x} → Rm and hm : (Sx × S{x}) → Rm and unknown vectors:

πm ≡ E

(
am

(
{xj}j∈p̃

)′
am

(
{xj}j∈p̃

))−1

E

(
am

(
{xj}j∈p̃

)′
a
(
{xj}j∈p̃

))
ϕm ≡ E

(
hm

(
xi, {xj}j∈p̃

)′
hm

(
xi, {xj}j∈p̃

))−1

E

(
hm

(
xi, {xj}j∈p̃

)′
h
(
xi, {xj}j∈p̃

))
Then random assignment (RA) implies:

AGE(xp) = a(xp)− a({e0, . . . , e0}) (121)

≈ (am(xp)− am({e0, . . . , e0}))πm

CGE(xo,xp) = h(xo,xp)− h(xo, {e0, . . . , e0}) (122)

≈ (hm(xo,xp)− hm(xo, {e0, . . . , e0}))ϕm

where the approximation errors in (121) and (122) are proportional to the approximation

errors in (119) and (120) respectively.

As in Section 5.5, the sieve framework can be used to interpret ad-hoc functional
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form assumptions, or it can be used in combination with data-driven model selection

and averaging to produce a flexible model that is nonparametric in the limit.

Example 19 (Average group effects for peer gender). Figure 3 below shows estimates

of average group effects for share of male classmates. The specifications include:

• The linear model from columns (1) and (5) of Table 1:

a2

(
{xj}j∈pi

)
=
[
1 x̄i

]
(123)

• Linear splines with 1, 2, and 3 knots (the linear model is a zero-knot spline).

ak+2

(
{xj}j∈pi

)
=
[
1 x̄i (x̄i − knot1)I (x̄i > knot1) . . .

]
(124)

• The 3-bin model from columns (3) and (7) of Table 1.

a3

(
{xj}j∈pi

)
=
[
1 I (x̄i < 0.43) I (x̄i > 0.57)

]
(125)

• The jackknife model average (JMA) of the four linear spline models.

The first panel in Table 8 shows model selection and weighting statistics for each

specification. The 1-knot spline is the preferred model for the reading score by both AIC

and cross-validation. In comparison to the linear model, the more flexible models imply

a low marginal effect of boys when girls are in the majority, and a stronger negative

effect when boys are in the majority. In contrast, the linear model is the preferred model

for math, and makes similar predictions to those from richer models. The second panel

in Table 8 is discussed in Example 20 below.

B.3.3 Sieve models for reallocation effects

In the absence of separability, conditional group effect estimates from a saturated

model are required to recover many reallocation effects of interest. Unfortunately,

estimating such richly parameterized models is rarely practical with limited data. Sieve

approximations can provide a practical middle ground in this setting.

Example 20 (Sieve models of conditional group effects and reallocation effects). The

second panel in Table 8 shows model selection and weighting statistics for conditional

group effects models of the form:

h2m

(
xi, {xj}j∈pi

)
=
[
am

(
{xj}j∈pi

)
xiam

(
{xj}j∈pi

) ]
(126)
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Figure 3: Average group effects for classmate gender relative to an evenly-mixed classroom,
i.e., AGE(x̄) − AGE(0.5). Specifications include 3-bin model (red) and linear spline with
zero to three knots (blue). Jackknife model average of splines is depicted by thick black line.

Reading score Math score
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Model type spline/ spline spline spline binned spline/ spline spline spline binned
linear linear

# knots/bins 0 1 2 3 3 0 1 2 3 3
AGE model selection:

Model order (m) 2 3 4 5 3 2 3 4 5 3
AIC statistic 5612.00 5611.19 5612.98 5615.15 5611.68 5664.38 5666.21 5667.97 5669.67 5667.51
Leave-one-out MSE 0.8890 0.8885 0.8893 0.8903 0.8889 0.8976 0.8984 0.8993 0.9001 0.8987
JMA weight 0.3702 0.6298 0.0000 0.0000 0.9180 0.0820 0.0000 0.0000

CGE model selection:
Model order (m) 4 6 8 10 6 4 6 8 10 6
AIC statistic 5605.97 5605.97 5609.56 5613.78 5604.45 5658.83 5661.73 5665.87 5668.04 5661.00
Leave-one-out MSE 0.8864 0.8864 0.8881 0.8901 0.8859 0.8974 0.8986 0.9006 0.9014 0.8978
JMA weight 0.5945 0.4055 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

Table 8: Model selection/weights for sieve estimates of group effects for classmate gender.
See Examples 19 and 20 for model definitions and additional background.
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for each am(·) model described in Example 19. Results are similar to those for Exam-

ple 19. JMA weights put roughly equal weight on the linear and one-knot splines for

reading, and all weight on the linear spline for math.

Table 9 shows reallocation effect estimates based on the JMA estimates. For reading,

the JMA estimates imply a somewhat larger benefit from making classrooms more

gender-balanced than is implied by the separable model estimates in Table 3. For math,

the JMA estimates are identical to the separable model estimates since the data-driven

JMA weights put all weight on the linear model.

Reading score Math score
Reallocation ∆x̄01 ∆x̄11 CRE0 CRE1 ARE CRE0 CRE1 ARE
JMA of splines:

Evenly-divided 0.033 −0.033 −0.002 0.038∗ 0.018 −0.009 0.024∗∗∗ 0.008
6/10 divided 0.000 0.000 −0.002 −0.007∗ −0.004 0.000 0.000 0.000
Random 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
60/40 random −0.020 0.020 0.003 −0.018∗ −0.007 0.006 −0.015∗∗∗ −0.005
Single-gender −0.500 0.500 0.100 −0.332∗ −0.116 0.139 −0.367∗∗∗ −0.114

Table 9: Reallocation effects for classmate gender in Project STAR using jackknife model
average (JMA) of linear spline models. JMA weights are reported in the second panel of
Table 8. Reallocation effects for simple random assignment are reported for comparison and
are always zero. Cluster-robust p-values: ∗ = 0.1, ∗∗ = 0.05, ∗∗∗ = 0.01.

C Proofs

This section provides proofs for all propositions in the main text and appendices.

Proof for Proposition 1

The conditions for Proposition 9 are met, so its results apply.

• (30) is a restatement of (30′) in Proposition 9.

• (31) is a restatement of (31′).
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• (32) follows directly from the definitions:

ARE(GR) = E(yi(p(i,GR(X,ρ)))− yi(p̃)) (definition of ARE)

=

K∑
k=0

E (yi(p(i,GR(X,ρ)))− yi(p̃)|xi = ek) Pr (xi = ek)

=
K∑
k=0

µkCREk(GR) (definition of µ and CRE)

• (33) is a restatement of (33′).

• (34) is a restatement of (34′).

• (35′) simplifies to (35) since Assumption 6 implies that |xp| = n0 − 1 and fn(|xp|+
1) = 1 for all xp ∈ S{x}. That is:

wG
sb(µ) =

∑
xp∈S{x} M (x̄(xp), |xp|,µ) fn(|xp|+ 1)I

(
zS(xp) = es

)
I (z(xp) = eb)∑

xp∈S{x} M (x̄(xp), |xp|,µ) fn(|xp|+ 1)I (z(xp) = eb)

(by (35′))

=

∑
xp∈S{x} M (x̄(xp), n0 − 1,µ) I

(
zS(xp) = es

)
I (z(xp) = eb)∑

xp∈S{x} M (x̄(xp), n0 − 1,µ) I (z(xp) = eb)

(by substitution)

which is result (35).

• (36) is a restatement of (36′).

• (37) is a restatement of (37′).

• (38) is a restatement of (38′).

• (39′) simplifies to (39) since Assumption 6 implies that |xp| = n0 − 2 and fn(|xp|+
2) = 1 for all xp ∈ Mx.

Proof for Proposition 2

By construction, {xj}j∈pi
is a function of (T−i,G) where T−i be the sub-matrix of T

that excludes row i. Assumption 3 implies that τi is independent of T−i and assumption

(RA) implies that τi is independent of G. Therefore ci is independent of {xj}j∈pi
as

well as any function of {xj}j∈pi
including x̄i or zi.

Results (40) and (41) are standard implications in regressions with uncorrelated
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explanatory variables. Let L(yi|ci, x̄i) ≡ ζ0 + ciζ1 + x̄iζ2. Then:

L(yi|x̄i) = L(ζ0 + ciζ1 + x̄iζ2|x̄i) (law of iterated projections)

= ζ0 + L(ci|x̄i)ζ1 + x̄iζ2

= ζ0 + E(ci)ζ1 + x̄iζ2 (RA =⇒ L(ci|x̄i) = E(ci))

L(yi|ci) = L(ζ0 + ciζ1 + x̄iζ2|ci) (law of iterated projections)

= ζ0 + ciζ1 + L(x̄i|ci)ζ2
= ζ0 + ciζ1 + E(x̄i)ζ2 (RA =⇒ L(x̄i|ci) = E(x̄i))

L(yi|ci, x̄i) = ζ0 + ciζ1 + x̄iζ2 (definition)

= ζ0 + (L(yi|ci)− ζ0 − E(x̄i)ζ2) + (L(yi|x̄i)− ζ0 − E(ci)ζ1)

(substitution)

= L(yi|ci) + L(yi|x̄i) +−(ζ0 + E(ci)ζ1 + E(x̄i)ζ2)︸ ︷︷ ︸
(constant)

which is result (40). Substituting zi for x̄i in the argument above yields result (41).

Proof for Lemma 1

The conditions for Lemma 2 are met, so its results apply. Result (42) follows from result

(42′) in Lemma 2, where n = n0.

Proof for Proposition 3

1. The conditions for Proposition 10 are met, so its results apply.

• (43) is a restatement of (43′).

• (44) follows from (44′) where PEij = PE(τi, τj , 0, n0).

• (45) follows from (45′) where CPE(xo,xp) = CPE(xo,xp, n0).

• (46) follows from (46′) where APE(xp) = CPE(xp, n0).

2. For any i, j:

OEi + PEj = (PE(τi, 1, 0, n0) + c) + (PE(1, τj , 0, n0)− PE(1, 1, 0, n0)− c)

= (PE(τi, 1, 0, n0) + c) + (PE(τi, τj , 0, n0)− PE(τi, 1, 0, n0)− c)

(by OS)

= PE(τi, τj , 0, n0)

= PEi,j (127)
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Then for any i: ∑
j∈p

OEi + PEj =
∑
j∈p

PEi,jtagby(127) (128)

= yi(p) (by (44))

which is the result in (47). To get the result in (48):

APE(xp) = E(PEij |xj = xp)− E(PEij |xj = e0) (by (46))

= E (OEi + PEj |xj = xp)− E (OEi + PEj |xj = e0) (by (127))

= E(PEj |xj = xp)− E(PEj |xj = e0) + E (OEi|xj = xp)− E (OEi|xj = e0)

= E(PEj |xj = xp)− E(PEj |xj = e0) + E (OEi)− E (OEi)

(by (10) =⇒ OEi ⊥⊥ xj)

= E(PEj |xj = xp)− E(PEj |xj = e0)

CPE(xo,xp) = E(PEij |xi = xo,xj = xp)− E(PEij |xi = xo,xj = e0) (by (45))

= E (OEi + PEj |xi = xo,xj = xp)− E (OEi + PEj |xi = xo,xj = e0)

(by (127))

= E (PEj |xi = xo,xj = xp)− E (PEj |xi = xo,xj = e0)

+ E (OEi|xi = xo,xj = xp)− E (OEi|xi = xo,xj = e0)

(129)

= E (PEj |xj = xp)− E (PEj |xj = e0) + E (OEi|xi = xo)− E (OEi|xi = xo)

(by (10) =⇒ (xi, OEi) ⊥⊥ (xj , PEj))

= E(PEj |xj = xp)− E(PEj |xj = e0)

= APE(xp)

which is the result in (48).

Proof for Proposition 4

The conditions for Proposition 11 are met, so its results apply.

• (49) and (51) follow from (49b′) and (51′) in Proposition 11 where Sn = {n0} and

fn(n0) = 1.

• (50) and (52) follow from (50b′) and (52′) in Proposition 11 where Sn = {n0} and

fn(n0) = 1.

• (53) and (54) follow from (53b′) and (54b′) in Proposition 11, where Sn = {n0}
and fn(n0) = 1, and (52′) simplifies to (52).
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Proof for Proposition 5

The conditions for Proposition 12 are met, so its results apply.

• (55) and (57) are restatements of (55′) and (57′) in Proposition 12.

• (56) and (58) are restatements of (56′) and (58′) in Proposition 12.

• (61) and (62) are restatements of (61′) and (62′) in Proposition 12, where (35′)

simplifies to (35) and (60) is a restatement of (60′).

• (63) and (64) are restatements of (63′) and (64′) in Proposition 12, where (39′)

simplifies to (39) and (60) is a restatement of (60′).

Proof for Proposition 6

1. Let G̃ be a purely random group assignment and let p̃i = p(i, G̃). Since Y(·)
satisfies (PS) and G̃ satisfies (RA), Part 1 of Proposition 4 applies to the joint

distribution of counterfactual outcomes (Y(G̃),X, X̄(X, G̃)). Since G satisfies

(SA), Lemma 1 applies to the joint distribution of actual outcomes (Y,X, X̄). Let

the vector of best linear predictor coefficients ζ be defined as in equation (157) of

the proof for Proposition 11. Then:

E(yi|xi = x, x̄i = x̄) = E(yi(p̃i)|xi = x, x̄i(p̃i) = x̄) (by (42) in Lemma 1)

= ζ0(n0 − 1) + xζ1(n0 − 1) + x̄ζ2(n0 − 1) + xζ3(n0 − 1)x̄′

(by (160) in the proof for Proposition 11)
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Applying the law of iterated projections:

L(yi|xi, x̄i,x
′
ix̄i) = L(E(yi|xi, x̄i)|xi, x̄i,x

′
ix̄i) (law of iterated projections)

= L

ζ0(n0 − 1) + xiζ1(n0 − 1)

+ x̄iζ2(n0 − 1) + xiζ3(n0 − 1)x̄′
i

∣∣∣∣∣∣xi, x̄i,x
′
ix̄i


(result above)

= ζ0(n0 − 1) + xiζ1(n0 − 1)

+ x̄iζ2(n0 − 1) + xiζ3(n0 − 1)x̄′
i

(130)

L(yi|xi, x̄i,x
′
ix̄i, zi) = L(E(yi|xi, x̄i)|xi, x̄i,x

′
ix̄i, zi)

(law of iterated projections)

= L

ζ0(n0 − 1) + xiζ1(n0 − 1)

+ x̄iζ2(n0 − 1) + xiζ3(n0 − 1)x̄′
i

∣∣∣∣∣∣xi, x̄i,

x′
ix̄i, zi


(result above)

= ζ0(n0 − 1) + xiζ1(n0 − 1)

+ x̄iζ2(n0 − 1) + xiζ3(n0 − 1)x̄′
i

(131)

= L(yi|xi, x̄i,x
′
ix̄i) (by (130) and (131))

which is result (65).

2. The assumptions here (PS, OS, SA) imply that all results in Propositions 3 and 5

apply. Therefore:

APEℓ = CPEkℓ for all k (by (48) in Proposition 3)

=
β2ℓ + β3kℓ
n0 − 1

(by (54) in Proposition 5)

which can only be true if β3kℓ = β30ℓ = 0 for all k, ℓ.

Proof for Proposition 7

For convenience, let yRi ≡ yi(p(i, G̃R)), x̄
R
i ≡ x̄(p(i, G̃R)), and zRi ≡ z(x̄R

i ).

1. Since G̃R satisfies (SA), Lemma 1 applies:

E(yRi |xi = x, x̄R
i = x̄) = E(yi(p̃)|xi = x, x̄i(p̃) = x̄) (by (42) in Lemma 1)

Pick any b > 0. By assumption, Sb
x̄ =

{
x̄b
}
is a singleton, and the events x̄R

i = x̄b
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and zRi = eb are identical. Therefore:

E(yRi |xi = ek, z
R
i = eb) = E(yRi |xi = ek, x̄

R
i = x̄b) (identical events)

= E(yi(p̃)|xi = ek, x̄i(p̃) = x̄b) (by Lemma 1)

= E(yi(p̃)|xi = ek, z(p̃) = eb) (identical events)

= E(yi(p̃)|xi = ek, z(p̃) = e0) + CGEkb (132)

Summing over all values of z:

E(yRi |xi = ek) =
B∑
b=0

E(yRi |xi = ek, z
R
i = eb) Pr(z

R
i = eb|xi = ek)

=

B∑
b=1

E(yRi |xi = ek, z
R
i = eb) Pr(z

R
i = eb|xi = ek)

(since Pr(x̄R
i ∈ S0

x̄) = 0)

=
B∑
b=1

(E(yi(p̃)|xi = ek, z(p̃) = e0) + CGEkb) Pr(z
R
i = eb|xi = ek)

(by (132))

= E(yi(p̃)|xi = ek, z(p̃) = e0)


B∑
b=1

Pr(zRi = eb|xi = ek)︸ ︷︷ ︸
1


+

B∑
b=1

CGEkb Pr(z
R
i = eb|xi = ek)

= E(yi(p̃)|xi = ek, z(p̃) = e0) +
B∑
b=1

CGEkb Pr(z
R
i = eb|xi = ek)

(133)
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Similarly:

E(yi(p̃)|xi = ek) =
B∑
b=0

E(yi(p̃)|xi = ek, z(p̃) = eb) Pr(z(p̃) = eb|xi = ek)

=

B∑
b=0

E(yi(p̃)|xi = ek, z(p̃) = eb) Pr(z(p̃) = eb)

(since p̃ ⊥⊥ xi)

= E(yi(p̃)|xi = ek, z(p̃) = e0) Pr(z(p̃) = e0)

+

B∑
b=1

E(yi(p̃)|xi = ek, z(p̃) = eb) Pr(z(p̃) = eb)

= E(yi(p̃)|xi = ek, z(p̃) = e0) Pr(z(p̃) = e0)

+

B∑
b=1

(E(yi(p̃)|xi = ek, z(p̃) = e0) + CGEkb) Pr(z(p̃) = eb)

(by (132))

= E(yi(p̃)|xi = ek, z(p̃) = e0)


B∑
b=0

Pr(z(p̃) = eb)︸ ︷︷ ︸
1


+

B∑
b=1

CGEkb Pr(z(p̃) = eb)

= E(yi(p̃)|xi = ek, z(p̃) = e0) +

B∑
b=1

CGEkb Pr(z(p̃) = eb)

(134)
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Combining these results yields:

CREk(GR) = E(yi(p(i, G̃R))− yi(p̃)|xi = ek) (definition of CRE)

= E(yRi |xi = ek)− E(yi(p̃)|xi = ek)

=

(
E(yi(p̃)|xi = ek, z(p̃) = e0) +

B∑
b=1

CGEkb Pr(z
R = eb|xi = ek)

)

−

(
E(yi(p̃)|xi = ek, z(p̃) = e0) +

B∑
b=1

CGEkb Pr(z(p̃) = eb)

)
(by (133) and (134))

=
B∑
b=1

CGEkb

(
Pr(zRi = eb|xi = ek)− Pr(z(p̃) = eb)

)
=

B∑
b=1

∆zkb(GR)CGEkb

which is result (68). Result (67) follows by substituting (68) into result (32) of

Proposition 1.
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2. Given (PS), part 1 of Proposition 3 applies:

E(yRi |X, G̃R) = E(yi(p(i, G̃R))|X, G̃R) (definition)

= E

 ∑
j∈p(i,G̃R)

PEij

∣∣∣∣∣∣X, G̃R

 (by Proposition 3)

=
∑
j ̸=i

E
(
PEij

∣∣∣X, G̃R

)
I
(
j ∈ p(i, G̃R)

)
=
∑
j ̸=i

E
(
PE(τi, τj , n0)

∣∣∣X, G̃R

)
I
(
j ∈ p(i, G̃R)

)
=
∑
j ̸=i

E (PE(τi, τj , n0) |X) I
(
j ∈ p(i, G̃R)

)
(SA =⇒ τi, τj ⊥⊥ G̃R|X)

=
∑
j ̸=i

E (PE(τi, τj , n0) |xi,xj ) I
(
j ∈ p(i, G̃R)

)
(Assumption 3 =⇒ τi,xi ⊥⊥ τj ,xj for i ̸= j)

=
∑
j ̸=i

(
ζ0 + xiζ1 + xjζ2 + xiζ3x

′
j

)
I
(
j ∈ p(i, G̃R)

)
(where ζ is defined as in (157))

= ζ0(n0 − 1) + xiζ1(n0 − 1) + x̄R
i ζ2(n0 − 1) + xiζ3(n0 − 1)x̄R′

i

(135)

Averaging over values of x̄:

E(yRi |xi = x) = E(E(yRi |X, G̃R)|xi = x) (Law of iterated expectations)

= E

ζ0(n0 − 1) + xiζ1(n0 − 1)

+ x̄R
i ζ2(n0 − 1) + xiζ3(n0 − 1)x̄R′

i

∣∣∣∣∣∣xi = x

 (by (135))

= ζ0(n0 − 1) + xζ1(n0 − 1)

+ E(x̄R
i |xi = x)ζ2(n0 − 1) + xζ3(n0 − 1)E(x̄R

i |xi = x)′

(136)
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This result also applies when G̃R is purely random, so:

E(yi(p̃)|xi = x) = ζ0(n0 − 1) + xζ1(n0 − 1) + E(x̄i(p̃)|xi = x)ζ2(n0 − 1)

+ xζ3(n0 − 1)E(x̄i(p̃)|xi = x)′

(by (136))

= ζ0(n0 − 1) + xζ1(n0 − 1) + E(x̄i(p̃))ζ2(n0 − 1)

+ xζ3(n0 − 1)E(x̄i(p̃))
′

(RA =⇒ x̄i(p̃) ⊥⊥ xi)

= ζ0(n0 − 1) + xζ1(n0 − 1) + µζ2(n0 − 1) + xζ3(n0 − 1)µ′

(137)

Combining these results:

CREk(GR) = E(yRi − yi(p̃)|xi = ek)

=

ζ0(n0 − 1) + ekζ1(n0 − 1) + E(x̄R
i |xi = ek)ζ2(n0 − 1)

+ ekζ3(n0 − 1)E(x̄R
i |xi = ek)

′


−

ζ0(n0 − 1) + ekζ1(n0 − 1) + µζ2(n0 − 1)

+ ekζ3(n0 − 1)µ′


(by (136) and (137))

=
(
E(x̄R

i |xi = ek)− µ
)
ζ2(n0 − 1) + ekζ3(n0 − 1)

(
E(x̄R

i |xi = ek)− µ
)′

= (n0 − 1)
K∑
ℓ=1

(
E(x̄Riℓ|xi = ek)− µℓ

)
(ζ2ℓ + ζ3kℓ)

= (n0 − 1)

K∑
ℓ=1

∆x̄kℓ(GR)CPEkℓ

which is result (71). Result (70) follows by applying the law of total probability to

(71).

3. Given (PS, OS), Part 2 of Proposition 3 applies. By equation (48) in Proposition 3,

CPEkℓ = APEℓ and so result (74) follows from (71) by substitution. Result

(73) follows from the fact that individual and peer characteristics have the same
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expected value in any reallocation:

K∑
k=0

∆x̄kℓ(GR)µk =
K∑
k=0

(
E(x̄Riℓ|xi = ek)− µℓ

)
µk (definition of ∆x̄)

=

K∑
k=0

E(x̄Riℓ|xi = ek) Pr(xi = ek)− E(xiℓ)

K∑
k=0

Pr(xi = ek)

(definition of µ)

= E(x̄Riℓ)− E(xiℓ) (law of total probability)

= 0 (138)

Therefore:

ARE(GR) = (n0 − 1)

K∑
k=0

K∑
ℓ=1

µk∆x̄kℓ(GR)CPEkℓ (by (70))

= (n0 − 1)

K∑
k=0

K∑
ℓ=1

µk∆x̄kℓ(GR)APEℓ (by (48) in Proposition 3)

= (n0 − 1)
K∑
ℓ=1

APEℓ

K∑
k=0

∆x̄kℓ(GR)µk︸ ︷︷ ︸
=0 by (138)

= 0

which is result (73).

Proof for Proposition 8

Proof. Let the approximation error in (76) be:

vm(xp) ≡ a(xp)− am(xp)π̄ ≈ 0 (139)

Assumptions 1–6 and peer separability are given, so part (1) of Proposition 3 applies.

Therefore:

yi = yi(pi) =
∑
j∈pi

PEij (by (44) in Proposition 3)
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Taking expectations:

E
(
yi

∣∣∣{xj}j∈pi

)
= E

∑
j∈pi

PEij

∣∣∣∣∣∣ {xj}j∈pi


=
∑
j∈pi

E (PEij |xj) (RA =⇒ τi, τj ⊥⊥ τj′)

=
∑
j∈pi

a(xj) (by (76))

=
∑
j∈pi

am(xj)π̄ +
∑
j∈pi

vm(xj) (by (139))

= (n0 − 1)āiπ̄ +
∑
j∈pi

vm(xj) (140)

By construction:

L(vm(xi)|am(xi)) = L(a(xi)− am(xp)π̄|am(xi))

= am(xi)π̄ − am(xi)π̄

= 0 (141)

Applying the law of iterated projections:

L (yi|āi) = L
(
E
(
yi

∣∣∣{xj}j∈pi

)∣∣∣ āi)
= L

(n0 − 1)āiπ̄ +
∑
j∈pi

vm(xj)

∣∣∣∣∣∣ āi
 (by (78))

= (n0 − 1)āiπ̄ +
∑
j∈pi

L (vm(xj)| āi)

= (n0 − 1)āiπ̄

which implies that:

π = (n0 − 1)π̄ (142)
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By part (1) of Proposition 3:

APE(xp) = E (PEij |xj = xp)− E (PEij |xj = e0) (by (46))

= a(xp)− a(e0) (by definition of a(·))

= am(xp)π̄ − am(e0)π̄ + vm(xp)− vm(e0) (by (139))

≈
(
am(xp)− am(e0)

n0 − 1

)
π (by (142))

which is result (79) in the proposition, with approximation error the same order of

magnitude as the approximation error in (76) in the sense that:

sup
xp∈Sx

|vm(xp)| < B =⇒ sup
xp∈Sx

|vm(xp)− vm(e0)| < 2B (143)

for any finite constant B > 0.

Proof for Proposition 9

1. Let p̃ be a random draw of n− 2 peers from I \ {i}. Then:

APEℓ(n) = E
(
yi({j} ∪ p̃)− yi(

{
j′
}
∪ p̃)

∣∣xj = eℓ,xj′ = e0
)

(definition)

=
K∑
k=0

E

yi({j} ∪ p̃)− yi(
{
j′
}
∪ p̃)

∣∣∣∣∣∣xi = ek,

xj = eℓ,xj′ = e0

Pr(xi = ek|xj = eℓ,xj′ = e0)

=
K∑
k=0

E

yi({j} ∪ p̃)− yi(
{
j′
}
∪ p̃)

∣∣∣∣∣∣xi = ek,

xj = eℓ,xj′ = e0

Pr(xi = ek)

(Assumption 3 =⇒ xi ⊥⊥ xj ,xj′)

=

K∑
k=0

µkCPEkℓ(n)
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which is result (109). Then:

APEℓ =
∑
n∈Sn

APEℓ(n)fn(n) (definition)

=
∑
n∈Sn

(
K∑
k=1

CPEkℓ(n)

)
fn(n) (by (109))

=

K∑
k=1

∑
n∈Sn

CPEkℓ(n)fn(n)

=
K∑
k=1

CPEkℓ (definition of CPEk,ℓ)

which is result (30′).

Similarly, let ñ be a purely random draw from fn, let p̃ be a purely random draw

of ñ− 1 peers from I \ {i} and let z(p) ≡ z
(
{xj}j∈p

)
Then:

AGEb = E (yi(p̃) |z (p̃) = eb )− E (yi(p̃) |z (p̃) = e0 ) (definition)

=
K∑
k=0

E (yi(p̃) |xi = ek, z (p̃) = eb ) Pr (xi = ek |z (p̃) = eb )

−
K∑
k=0

E (yi(p̃) |xi = ek, z (p̃) = e0 ) Pr (xi = ek |z (p̃) = e0 )

=

K∑
k=0

E (yi(p̃) |xi = ek, z (p̃) = eb )

− E (yi(p̃) |xi = ek, z (p̃) = e0 )

Pr (xi = ek)

(Assumption 3 =⇒ xi ⊥⊥ {xj}j ̸=i , p̃)

=

K∑
k=0

µkCGEkb

which is result (31′).

2. Let ñ be a random draw from fn and let p̃ be a random draw of ñ− 1 peers from

I \{i}. By discrete characteristics (DC), {xj}j∈p̃ is the result of ñ−1 independent

draws from a categorical distribution with probability vector µ. So its probability

distribution can be derived from the multinomial distribution:

Pr
(
{xj}j∈p̃ = xp

∣∣∣ ñ = |xp|+ 1
)
= M(x̄(xp), |xp|,µ)

Pr
(
{xj}j∈p̃ = xp

)
= M(x̄(xp), |xp|,µ)fn(|xp|+ 1) (144)
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where the function M(·) is defined in (36′).

Let z(p) ≡ z
(
{xj}j∈p

)
, let zS(p) ≡ zS

(
x̄
(
{xj}j∈p

))
, and let:

wG
sb(µ) ≡ Pr(zS(p̃) = es|z(p̃) = eb)

=
Pr(zS(p̃) = es ∩ z(p̃) = eb)

Pr(z(p̃) = eb)

=

∑
xp∈S{x} Pr

(
{xj}j∈p̃ = xp

)
I
(
zS(xp) = es

)
I (z(xp) = eb)∑

xp∈S{x} Pr
(
{xj}j∈p̃ = xp

)
I (z(xp) = eb)

=

∑
xp∈S{x} M (x̄(xp), |xp|,µ) fn(|xp|+ 1)I

(
zS(xp) = es

)
I (z(xp) = eb)∑

xp∈S{x} M (x̄(xp), |xp|,µ) fn(|xp|+ 1)I (z(xp) = eb)

(by (144))

which is equation (35′).

For any (k, b):

E

yi(p̃)

∣∣∣∣∣∣ xi = ek,

z(p̃) = eb

 =

S∑
s=0

E

yi(p̃)

∣∣∣∣∣∣ xi = ek,

zS(p̃) = es

Pr

zS(p̃) = es

∣∣∣∣∣∣ xi = ek,

z(p̃) = eb


= E

yi(p̃)

∣∣∣∣∣∣ xi = ek,

zS(p̃) = e0

Pr(zS(p̃) = e0|z(p̃) = eb)

+
S∑

s=1

E

yi(p̃)

∣∣∣∣∣∣ xi = ek,

zS(p̃) = es

Pr(zS(p̃) = es|z(p̃) = eb)

= E

yi(p̃)

∣∣∣∣∣∣ xi = ek,

zS(p̃) = e0

(1− S∑
s=1

Pr(zS(p̃) = es|z(p̃) = eb)

)

+
S∑

s=1

E

yi(p̃)

∣∣∣∣∣∣ xi = ek,

zS(p̃) = es

Pr(zS(p̃) = es|z(p̃) = eb)

= E

yi(p̃)

∣∣∣∣∣∣ xi = ek,

zS(p̃) = e0

+

S∑
s=1

CGES
ks Pr(z

S(p̃) = es|z(p̃) = eb)

(145)
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Substituting result (145) into the definition of CGEkb produces:

CGEkb = E

yi(p̃)

∣∣∣∣∣∣ xi = ek,

z(p̃) = eb

− E

yi(p̃)

∣∣∣∣∣∣ xi = ek,

z(p̃) = e0


(definition of CGEkb)

=

E

yi(p̃)

∣∣∣∣∣∣ xi = ek,

zS(p̃) = e0

+
S∑

s=1

CGES
ks Pr

(
zS(p̃) = es |z(p̃) = eb

)
−

E

yi(p̃)

∣∣∣∣∣∣ xi = ek,

zS(p̃) = e0

+
S∑

s=1

CGES
ks Pr(z

S(p̃) = es|z(p̃) = e0)


(by (145))

=
S∑

s=1

CGES
ks

 Pr(zS(p̃) = es|z(p̃) = eb)

−Pr(zS(p̃) = es|z(p̃) = e0)


=

S∑
s=1

CGES
ks

(
wG
sb(µ)− wG

s0(µ)
)

(definition of wG
sb(·) above)

which is result (34′). Result (33′) follows by substitution of (34′) into (31′).

3. Let ñ be a random draw from fn, let p̃ be a random draw of ñ− 1 peers from I \
{i, j′}, and let q̃ be a random draw of ñ−2 peers. By discrete characteristics (DC),

{xj}j∈q̃ is the result of ñ− 2 independent draws from a categorical distribution

with probability vector µ. So its probability distribution can be derived from the

multinomial distribution. Since q̃ is independent of xi and xj′ :

Pr

{xj}j∈q̃ = xp

∣∣∣∣∣∣xi = ek,

xj′ = eℓ

 = Pr
(
{xj}j∈q̃ = xp

)
(146)

=
∑
n∈Sn

Pr
(
{xj}j∈q̃ = xp

∣∣∣ ñ = n
)
Pr(ñ = n)

(law of total probability)

= Pr
(
{xj}j∈q̃ = xp

∣∣∣ ñ = |xp|+ 2
)
Pr(ñ = |xp|+ 2)

= M (x̄ (xp) , |xp|,µ) fn(|xp|+ 2) (147)

Rearranging the definition of CGE:

E

yi (p̃)

∣∣∣∣∣∣xi = ek,

zS(p̃) = es

 = E

yi (p̃)

∣∣∣∣∣∣xi = ek,

zS(p̃) = e0

+ CGES
ks (148)
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For any xp ∈ Mx, let:

A(xp) ≡ E

yi
({

j′
}
∪ q̃
) ∣∣∣∣∣∣∣∣
xi = ek,

xj′ = eℓ,

{xj}j∈q̃ = xp


= E

yi (p̃)

∣∣∣∣∣∣xi = ek,

{xj}j∈p̃ = xp ∪ {eℓ}

 (equivalent events)

= E

yi (p̃)

∣∣∣∣∣∣
xi = ek,

zS
(
{xj}j∈p̃

)
= zS (xp ∪ {eℓ})

 (equivalent events)

=

S∑
s=1

E

yi (p̃)

∣∣∣∣∣∣xi = ek,

zS(p̃) = es

 I
(
zS(xp ∪ {eℓ}) = es

)

=

S∑
s=1

E

yi (p̃)

∣∣∣∣∣∣xi = ek,

zS(p̃) = e0

+ CGEks

 I
(
zS(xp ∪ {eℓ}) = es

)
(by (148))

= E

yi (p̃)

∣∣∣∣∣∣xi = ek,

zS(p̃) = e0

+

S∑
s=1

CGEksI
(
zS(xp ∪ {eℓ}) = es

)
(149)
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For any ℓ, let:

B(eℓ) ≡ E

yi
({

j′
}
∪ q̃
) ∣∣∣∣∣∣xi = ek,

xj′ = eℓ



=
∑

xp∈Mx

E

yi
({

j′
}
∪ q̃
) ∣∣∣∣∣∣∣∣
xi = ek,

xj′ = eℓ,

{xj}j∈q̃ = xp

Pr

{xj}j∈q̃ = xp

∣∣∣∣∣∣xi = ek,

xj = eℓ


(law of total probability)

=
∑

xp∈Mx

E

yi
({

j′
}
∪ q̃
) ∣∣∣∣∣∣∣∣
xi = ek,

xj′ = eℓ,

{xj}j∈q̃ = xp

Pr
(
{xj}j∈q̃ = xp

)
(by (146))

=
∑

xp∈Mx


E

yi (p̃)

∣∣∣∣∣∣xi = ek,

zS(p̃) = e0


+

S∑
s=1

CGEksI
(
zS(xp ∪ {eℓ}) = es

)

Pr
(
{xj}j∈q̃ = xp

)

(by (149))

= E

yi (p̃)

∣∣∣∣∣∣xi = ek,

zS(p̃) = e0

 ∑
xp∈Mx

Pr
(
{xj}j∈q̃ = xp

)

+
S∑

s=1

CGEks

∑
xp∈Mx

I
(
zS(xp ∪ {eℓ}) = es

)
Pr
(
{xj}j∈q̃ = xp

)

= E

yi (p̃)

∣∣∣∣∣∣xi = ek,

zS(p̃) = e0


+

S∑
s=1

CGEks

∑
xp∈Mx

I
(
zS(xp ∪ eℓ) = es

)
M(x̄ (xp) , |xp|,µ)fn(|xp|+ 2)

(by (147))

= E

yi (p̃)

∣∣∣∣∣∣xi = ek,

zS(p̃) = e0

+

S∑
s=1

CGEksw
P
sℓ(µ) (150)
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Then by the definition of CPEkℓ:

CPEkℓ = E
(
yi ({j} ∪ q̃)− yi

({
j′
}
∪ q̃
)∣∣xi = ek,xj = eℓ,xj′ = e0

)
(definition)

=
E (yi ({j} ∪ q̃)|xi = ek,xj = eℓ)

− E (yi ({j} ∪ q̃)|xi = ek,xj = e0)

= E

yi (p̃)

∣∣∣∣∣∣xi = ek,

zS(p̃) = e0

+

S∑
s=1

CGEksw
P
sℓ(µ)

− E

yi (p̃)

∣∣∣∣∣∣xi = ek,

zS(p̃) = e0

−
S∑

s=1

CGEksw
P
s0(µ)

(by (150))

=

S∑
s=1

CGEks

(
wP
sℓ(µ)− wP

s0(µ)
)

which is result (38′). Result (37′) follows by substitution of (38′) into (30′).

Proof for Proposition 10

Let a, b ∈ T be unobserved types, let e ∈ R2 be unobserved post-assignment shocks, let

n ≥ 2 be a positive integer, and let a[j] represent j copies of a. Using unobserved type 1

as an arbitrary reference type, peer separability implies:

y
(
a,
{
b[n−1]

}
, e
)
= y

(
a,
{
b[n−1]

}
, e
)
+

n−1∑
j=1

y
(
a,
{
b[j−1], 1[n−j]

}
, e
)
− y

(
a,
{
1, b[j−1], 1[n−j−1]

}
, e
)

= y
(
a,
{
1[n−1]

}
, e
)
+

n−1∑
j=1

y
(
a,
{
b[j], 1[n−j−1]

}
, e
)
− y

(
a,
{
1, b[j−1], 1[n−j−1]

}
, e
)

= y
(
a,
{
1[n−1]

}
, e
)
+

n−1∑
j=1

y
(
a,
{
b, 1[n−2]

}
, e
)
− y

(
a,
{
1[n−1]

}
, e
)

(by PS)

= y
(
a,
{
1[n−1]

}
, e
)
+ (n− 1)

(
y
(
a,
{
b, 1[n−2]

}
, e
)
− y

(
a,
{
1[n−1]

}
, e
))

Rearranging this result:

y
(
a,
{
b, 1[n−2]

}
, e
)
− y

(
a,
{
1[n−1]

}
, e
)
=

y
(
a,
{
b[n−1]

}
, e
)
− y

(
a,
{
1[n−1]

}
, e
)

n− 1

= PE(a, b, e, n)− PE(a, 1, e, n) (151)
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Let B ∈ T n−1 be a vector of unobserved types, let Bj be element j of B and let Bj:k

be a multiset containing the elements j through k of B (Bj:k = ∅ for j < k). Then:

y (a, {B1:n−1} , e) = y (a, {B1:n−1} , e) +
n−1∑
j=1

y
(
a,
{
B1:j−1, 1

[n−j]
}
, e
)
− y

(
a,
{
B1:j−1, 1

[n−j]
}
, e
)

= y
(
a,
{
1[n−1]

}
, e
)
+

n−1∑
j=1

y
(
a,
{
B1:j , 1

[n−j−1]
}
, e
)
− y

(
a,
{
B1:j−1, 1

[n−j]
}
, e
)

= y
(
a,
{
1[n−1]

}
, e
)
+

n−1∑
j=1

y
(
a,
{
Bj , 1

[n−2]
}
, e
)
− y

(
a,
{
1[n−1]

}
, e
)

(by PS)

= y
(
a,
{
1[n−1]

}
, e
)
+

n−1∑
j=1

PE(a,Bj , e, n)− PE(a, 1, e, n)

(by (151))

= y
(
a,
{
1[n−1]

}
, e
)
−

n−1∑
j=1

PE(a, 1, e, n) +
n−1∑
j=1

PE(a,Bj , e, n)

=

n−1∑
j=1

PE(a,Bj , e, n) (152)

Let p be a peer group of any size. Then result (152) implies:

yi(p) = y
(
τi, {τj}j∈p , ϵi

)
=
∑
j∈p

PE(τi, τj , ϵi, |p|+ 1)

which is result (44′).

Next, note that (τi, τj) ⊥⊥ τj′ by equation (10) and ϵi ⊥⊥ τj′ so:

(PE(τi, τj , ϵi, n),xi,xj) ⊥⊥ xj′ (153)
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Let q̃ be a random draw of n− 2 peers from I \ {i, j}, and let:

CPE(xo,xp, n) ≡ E
(
yi({j} ∪ q̃)− yi(

{
j′
}
∪ q̃)

∣∣xi = xo,xj = xp,xj′ = e0
)

= E



PE(τi, τj , ϵi, n) +
∑
j′′∈q̃

PE(τi, τj′′ , ϵi, n)


−

PE(τi, τj′ , ϵi, n) +
∑
j′′∈q̃

PE(τi, τj′′ , ϵi, n)



∣∣∣∣∣∣∣∣∣∣∣∣
xi = xo,

xj = xp,

xj′ = e0


(by (44′))

= E
(
PE(τi, τj , ϵi, n)|xi = xo,xj = xp,xj′ = e0

)
− E

(
PE(τi, τj′ , ϵi, n)

∣∣xi = xo,xj = xp,xj′ = e0
)

= E (PE(τi, τj , ϵi, n)|xi = xo,xj = xp, )

− E
(
PE(τi, τj′ , ϵi, n)

∣∣xi = xo,xj′ = e0
) (by (153))

= E (PE(τi, τj , ϵi, n)|xi = xo,xj = xp)

− E (PE(τi, τj , ϵi, n)|xi = xo,xj = e0)

which is result (45′), and:

APE(xp, n) ≡ E
(
yi({j} ∪ q̃)− yi(

{
j′
}
∪ q̃)

∣∣xj = xp,xj′ = e0
)

= E



PE(τi, τj , ϵi, n) +
∑
j′′∈q̃

PE(τi, τj′′ , ϵi, n)


−

PE(τi, τj′ , ϵi, n) +
∑
j′′∈q̃

PE(τi, τj′′ , ϵi, n)



∣∣∣∣∣∣∣∣∣∣∣∣
xj = xp,

xj′ = e0


(by (44′))

= E
(
PE(τi, τj , ϵi, n)|xj = xp,xj′ = e0

)
− E

(
PE(τi, τj′ , ϵi, n)

∣∣xj = xp,xj′ = e0
)

= E (PE(τi, τj , ϵi, n)|xj = xp)

− E
(
PE(τi, τj′ , ϵi, n)

∣∣xj′ = e0
) (by (153))

= E (PE(τi, τj , ϵi, n)|xj = xp)− E (PE(τi, τj , ϵi, n)|xj = e0)

which is result (46′).
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Proof for Lemma 2

Let G̃ ∈ GI be a random group assignment that satisfies (SA). Choose any X0 ∈ RI×K

and G0 ∈ GI such that g0
i ≡ (i,p(i,G0)) is a vector of length n. For any matrix M

and vector v, let M[v] be the submatrix constructed from rows v in matrix M. Then:

E

yi(p(i, G̃))

∣∣∣∣∣∣X = X0,

G̃ = G0

 = E
(
y
(
τi, {τj}j∈p(i,G̃) , ϵi

)∣∣∣X = X0, G̃ = G0

)
= E

(
y
(
τi, {τj}j∈p(i,G0)

, ϵi

)∣∣∣X = X0, G̃ = G0

)
(conditioning rule)

= E
(
y
(
τi, {τj}j∈p(i,G0)

, ϵi

)∣∣∣X = X0

)
(by SA)

=
∑

T0∈T n

∑
ϵA∈Sϵ

y (T0[1],T0[2 : n], ϵA)

× Pr(T[g0
i ] = T0, ϵi = ϵA|X = X0)

=
∑

T0∈T n

∑
ϵA∈Sϵ

y (T0[1],T0[2 : n], ϵA) Pr(ϵi = ϵA)

×

 n∏
j=1

Pr
(
T[g0

i [j]] = T0[j]
∣∣X[g0

i [j]] = X0[g
0
i [j]]

)
(since ϵi ⊥⊥ (τi,xi) ⊥⊥ (τj ,xj) for all i ̸= j)

=
∑

T0∈T n

∑
ϵA∈Sϵ

y (T0[1],T0[2 : n], ϵA) Pr(ϵi = ϵA)

×
n∏

j=1

fτ (T0[j])I
(
x(T0[j]) = X0[g

0
i [j]]

)∑
τ∈T fτ (τ)I

(
x(τ) = X0[g0

i [j]]
)

≡ ζ(xi(X0), x̄i(X0,G0), n) (154)

Note that the last step in equation (154) makes use of the fact that (x̄i, ngi) fully

describes the frequency distribution of peer characteristics {xj}j∈pi
, and that the ζ(·)

function depends on the type distribution fτ (·) but not on the probability distribution

of G̃ other than through the (SA) condition.

Since a purely random group assignment and the true group assignment G both
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satisfy (SA), their conditional expectation functions are both given by (154).

E(yi|xi = xo, x̄i = xp, ngi = n) = E(E(yi|X,G)|xi = xo, x̄i = xp, ngi = n)

(law of iterated expectations)

= E(E(yi(p(i,G))|X,G)|xi = xo, x̄i = xp, ngi = n)

= E(ζ(xi(X), x̄i(X,G), ngi)|xi = xo, x̄i = xp, ngi = n)

(by (154))

= ζ(xo,xp, n) (155)

E(yi(p̃)|xi = xo, x̄i(p̃) = xp) = E(E(yi(p̃)|X, G̃)|xi = xo, x̄i(p̃) = xp)

(law of iterated expectations)

= E(ζ(xi(X), x̄i(X, p̃), n)|xi = xo, x̄i(p̃) = xp)

(by (154))

= ζ(xo,xp, n) (156)

Therefore they are equal, which is result (42′).

Proof for Proposition 11

1. By (PS), Part 1 of Proposition 10 applies. Let ζn ≡ (ζn0 , ζ
n
1 , ζ

n
2 , ζ

n
3 ) satisfy:

E(PE(τi, τj , ϵi, n)|xi = ek,xj = eℓ) = ζn0 + ekζ
n
1 + eℓζ

n
2 + ekζ

n
3 e

′
ℓ (157)

The linear functional form in (157) is without loss of generality since x is categorical.

The parameter of interest CPEkℓ(n) can be expressed as a function of ζn:

CPEkℓ(n) = E(PE(τi, τj , ϵi, n)|xi = ek,xj = eℓ)

− E(PE(τi, τj , ϵi, n)|xi = ek,xj = e0)

(by (45′) in Proposition 10)

=
(
ζn0 + ekζ

n
1 + eℓζ

n
2 + ekζ

n
3 e

′
ℓ

)
−
(
ζn0 + ekζ

n
1 + e0ζ

n
2 + ekζ

n
3 e

′
0

) (by (157))

=
(
ζn0 + ekζ

n
1 + eℓζ

n
2 + ekζ

n
3 e

′
ℓ

)
− (ζn0 + ekζ

n
1 )

(since e0 = 0)

= eℓζ
n
2 + ekζ

n
3 e

′
ℓ

= ζn2ℓ + ζn3kℓ (158)
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The next step is to show the relationship between the coefficients in ζ and the

coefficients in β:

E(yi|X,G) = E(yi(pi)|X,G)

= E

∑
j∈pi

PE(τi, τj , ϵi, ngi)

∣∣∣∣∣∣X,G


(PS =⇒ (44) in Proposition 3)

= E

 I∑
j=1

I∑
n=1

PE(τi, τj , ϵi, n)I (j ∈ pi) I (ngi = n)

∣∣∣∣∣∣X,G


(where I (·) is the indicator function)

=
I∑

n=1

I (ngi = n)
I∑

j=1

E(PE(τi, τj , ϵi, n)|X,G)I (j ∈ pi)

(since pi is a function of G)

=
I∑

n=1

I (ngi = n)
∑
j∈pi

E(PE(τi, τj , ϵi, n)|X,G)

=

I∑
n=1

I (ngi = n)
∑
j∈pi

E(PE(τi, τj , ϵi, n)|X)

(since RA, (5′) =⇒ (T, ϵ,X) ⊥⊥ (G,pi))

=
I∑

n=1

I (ngi = n)
∑
j∈pi

E(PE(τi, τj , ϵi, n)|xi,xj)

(since (10), (5′) =⇒ (τi, τj , ϵi) ⊥⊥
{
τj′
}
j′ /∈{i,j})

=

I∑
n=1

I (ngi = n)
∑
j∈pi

(ζn0 + xiζ
n
1 + xjζ

n
2 + xiζ

n
3 x

′
j) (by (157))

= ζ
ngi
0 (ngi − 1) + xiζ

ngi
1 (ngi − 1) + x̄iζ

ngi
2 (ngi − 1) + xiζ

ngi
3 (ngi − 1)x̄′

i

(159)
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Applying the law of iterated expectations to this result:

E(yi|xi = x, x̄i = x̄, ngi = n) = E(E(yi|X,G)|xi = x, x̄i = x̄, ngi = n)

(law of iterated expectations)

= E

ζ
ngi
0 (ngi − 1) + xiζ

ngi
1 (ngi − 1)

+ x̄iζ
ngi
2 (ngi − 1) + xiζ

ngi
3 (ngi − 1)x̄′

i

∣∣∣∣∣∣∣∣
xi = x,

x̄i = x̄

ngi = n


(by (159))

= ζn0 (n− 1) + xζn1 (n− 1) + x̄ζn2 (n− 1) + xζn3 (n− 1)x̄′

(160)

Applying the law of iterated projections to this result:

L(yi|xi, x̄i,xix̄
′
i;n) = L(E(yi|xi, x̄i, ngi)|xi, x̄i,xix̄

′
i;n)

(law of iterated projections)

= L

ζ
ngi
0 (ngi − 1) + xiζ

ngi
1 (ngi − 1)

+ x̄iζ
ngi
2 (ngi − 1) + xiζ

ngi
3 (ngi − 1)x̄′

i

∣∣∣∣∣∣xi, x̄i,xix̄
′
i;n


(by (160))

= ζn0 (n− 1)︸ ︷︷ ︸
βn
0

+xi ζ
n
1 (n− 1)︸ ︷︷ ︸

βn
1

+x̄i ζ
n
2 (n− 1)︸ ︷︷ ︸

βn
2

+xi ζ
n
3 (n− 1)︸ ︷︷ ︸

βn
3

x̄′
i

(161)

So βn
2 = ζn2 (n− 1), βn

3 = ζn3 (n− 1) and:

CPEk,ℓ(n) = ζn2ℓ + ζn3kℓ (by (158))

=
βn
2ℓ + βn

3kℓ

n− 1
(by (161))

which is result (50a′). Result (50b′) follows by substituting (50a′) into the definition

of CPEkℓ in equation (19b′).
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To get result (49a′), first note that:

E(PE(τi, τj , ϵi, n)|xj = x) = E(E(PE(τi, τj , ϵi, n)|xi,xj)|xj = x)

(law of iterated expectations)

= E(ζn0 + xiζ
n
1 + xjζ

n
2 + xiζ

n
3 x

′
j |xj = x) (by (157))

= ζn0 + E(xi|xj = x)ζn1 + xζn2 + E(xi|xj = x)ζn3 x
′

(conditioning rule)

= ζn0 + E(xi)ζ
n
1 + xζn2 + E(xi)ζ

n
3 x

′

(since (10) =⇒ xi ⊥⊥ xj)

= (ζn0 + E(xi)) ζ
n
1 + x

(
ζn2 + ζn′3 E(x′

i)
)

(162)

Equation (46′) from Proposition 10 implies:

APEℓ(n) = E(PE(τi, τj , ϵi, n)|xj = eℓ)− E(PE(τi, τj , ϵi, n)|xj = e0)

(PS =⇒ (46′) in Proposition 10)

=
(
(ζn0 + E(xi)ζ

n
1 ) + eℓ

(
ζn2 + ζn′3 E(x′

i)
))

−
(
(ζn0 + E(xi)ζ

n
1 ) + e0

(
ζn2 + ζn′3 E(x′

i)
)) (by (162))

=
(
(ζn0 + E(xi)ζ

n
1 ) + eℓ

(
ζn2 + ζn′3 E(x′

i)
))

− ((ζn0 + E(xi)ζ
n
1 ))

(since e0 = 0)

= eℓ
(
ζn2 + ζn′3 E(x′

i)
)

(163)

Having expressed L(yi|x̄i;n) in terms of the the coefficients in αn, it can also be
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expressed in terms of the coefficients in ζn:

L(yi|x̄i;n) = L(L(yi|xi, x̄i,x
′
ix̄i;n)|x̄i;n) (law of iterated projections)

= L

ζn0 (n− 1) + xiζ
n
1 (n− 1)

+ x̄iζ
n
2 (n− 1) + xiζ

n
3 (n− 1)x̄′

i

∣∣∣∣∣∣ x̄i;n

 (by (161))

= ζn0 (n− 1) + L(xi|x̄i)ζ
n
1 (n− 1)

+ x̄iζ
n
2 (n− 1) + L(xiζ

n
3 (n− 1)x̄′

i|x̄i)

(property of linear projection)

= ζn0 (n− 1) + E(xi)ζ
n
1 (n− 1)

+ x̄iζ
n
2 (n− 1) + E(xi)ζ

n
3 (n− 1)x̄′

i

(RA =⇒ xi ⊥⊥ x̄i)

= ζn0 (n− 1) + E(xi)ζ
n
1 (n− 1)︸ ︷︷ ︸

αn
0

+x̄i (ζ
n
2 (n− 1) + ζn′3 E(x′

i)(n− 1))︸ ︷︷ ︸
αn

1

(164)

So αn
1 = (ζn2 (n− 1) + ζn′3 E(x′

i)(n− 1)) and:

APEℓ(n) = eℓ
(
ζn2 + ζn′3 E(x′

i)
)

(by (163))

= eℓ
αn

1

n− 1
(by (164))

=
αn
1ℓ

n− 1

which is the result in (49a′). Result (49b′) can be derived by substituting (49a′)

into the definition of APEℓ in equation (17b′)

2. Let G̃ be a purely random group assignment whose group size distribution is

fn and let p̃i = p(i, G̃). Since outcomes are peer-separable (PS) and G̃ satisfies

(RA), Part 1 of Proposition 11 applies to the counterfactual outcomes. Therefore,

the counterfactual CEF is linear as shown in equation (161):

E

yi(p̃i)

∣∣∣∣∣∣∣∣
xi = xo,

x̄(p̃i) = xp,

|p̃i| = n− 1

 = L

yi(p̃i)

∣∣∣∣∣∣∣∣
xi = xo,

x̄(p̃i) = xp,

x′
ix̄(p̃i) = x′x̄

;n

 (by (161))

= β̃n
0 + xoβ̃n

1 + xpβ̃n
2 + xoβ̃n

3x
p′ (165)

where x̄(p) ≡ x̄
(
{xj}j∈p

)
and β̃n ≡ (β̃n

0 , β̃
n
1 , β̃

n
2 , β̃

n
3 ) is the best linear predictor
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coefficients from the counterfactual regression. Proposition 11 also implies that:

CPEkℓ(n) =
β̃n
2ℓ + β̃n

3kℓ

n− 1
(by (50a′) in Proposition 11)

Since G satisfies (SA), Lemma 2 applies. Therefore, the actual CEF is the same

as the counterfactual CEF, and the same applies to the best linear predictor.

Therefore, βn = β̃n and:

CPEkℓ(n) =
βn
2ℓ + βn

3kℓ

n− 1
(since β = β̃)

which is result (54a′). Result (53a′) follows from substitution of result (54a′) into

result (109) of Proposition 9. Results (53b′) and (54b′) follow by applying (53a′)

and (54a′) to the definitions of APEℓ and CPEkℓ respectively.

Proof for Proposition 12

1. By (RA), the actual peer group pi is a purely random draw from the same

distribution as p̃, so the joint distribution of
(
yi(p̃),xi, {xj}j∈p̃

)
is identical to

the joint distribution of
(
yi(pi),xi, {xj}j∈pi

)
. Letting z(p) ≡ z

(
{xj}j∈p

)
, this

implies:

CGEkb = E (yi(p̃) |xi = ek, z(p̃) = eb, z(q̃) = e0 )

−E (yi(q̃)|xi = ek, z(p̃) = eb, z(q̃) = e0)

(by (25′))

= E (yi(p̃) |xi = ek, z(p̃) = eb )

−E (yi(q̃)|xi = ek, z(q̃) = e0)

(since p̃ ⊥⊥ q̃)

= E (yi(pi)|xi = ek, z(pi) = eb)

−E (yi(pi)|xi = ek, z(pi) = e0)

(RA =⇒ same joint distribution)

= E(yi|xi = ek, zi = eb)− E(yi|xi = ek, zi = e0) (166)

Since xi and zi are categorical, E(yi|xi, zi) is trivially linear in (xi, zi,x
′
izi).

Therefore:

E(yi|xi, zi) = L(yi|xi, zi,x
′
izi)

= δ0 + xiδ1 + ziδ2 + xiδ3z
′
i (by (58′))
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Combining these two results produces:

CGEkb = E(yi|xi = ek, zi = eb)− E(yi|xi = ek, zi = e0) (by (166))

=
(
δ0 + ekδ1 + ebδ2 + ekδ3e

′
b

)
−
(
δ0 + ekδ1 + e0δ2 + ekδ3e

′
0

)
(result above)

=
(
δ0 + ekδ1 + ebδ2 + ekδ3e

′
b

)
− (δ0 + ekδ1) (since e0 = 0)

= ebδ2 + ekδ3e
′
b

= δ2b + δ3kb

which is result (56′). Result (55′) can be established by similar reasoning:

AGEb = E(yi(p̃)|z(p̃) = eb, z(q̃) = e0)

−E(yi(q̃)|z(p̃) = eb, z(q̃) = e0)

(by (23′))

= E(yi(p̃)|z(p̃) = eb)− E(yi(q̃)|z(q̃) = e0) (since p̃ ⊥⊥ q̃)

= E(yi(pi)|z(pi) = eb)

−E(yi(pi)|z(pi) = e0)

(RA =⇒ same joint distribution)

= E(yi|zi = eb)− E(yi|zi = e0) (167)

Since zi is categorical, E(yi|zi) is trivially linear in zi. Therefore:

E(yi|zi) = L(yi|zi) = γ0 + ziγ1 (168)

Combining these two results:

AGEb = E(yi|zi = eb)− E(yi|zi = e0) (by (167))

= (γ0 + ebγ1)− (γ0 + e0γ1) (by (168))

= ebγ1 (since e0 = 0)

= γ1b

which is result (55′).

2. Let G̃ be a purely random group assignment whose group size distribution is

fn and let p̃i = p(i, G̃). Let λ̃ ≡ (λ̃0, λ̃1, λ̃2, λ̃3) be the best linear predictor

coefficients from the counterfactual regression model:

L(yi(p̃i)|xi, z
S(p̃i),x

′
iz

S(p̃i)) = λ̃0 + xiλ̃1 + zS(p̃i)λ̃2 + xiλ̃3z
S(p̃i)

′ (169)
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where zS (p) ≡ zS
(
x̄
(
{xj}j∈p

))
. Since G̃ satisfies (RA), Part 1 of this proposi-

tion applies to the counterfactual outcomes:

CGES
ks = λ̃2s + λ̃3ks (by (166))

The counterfactual CEF is linear since zS(·) is saturated:

E(yi(p̃i)|xi = x, x̄(p̃i) = x̄) = L(yi(p̃i)|xi, z
S(p̃i),x

′
iz

S(p̃i)) (170)

= λ̃0 + xλ̃1 + zS(x̄)λ̃2 + xλ̃3z
S(x̄)′ (171)

Since G satisfies (SA), Lemma 1 applies, which implies that:

E(yi|xi = x, x̄i = x̄) = E(yi(p̃i)|xi = x, x̄(p̃i) = x̄) (by (42) in Lemma 1)

= λ̃0 + xλ̃1 + zS(x̄)λ̃2 + xλ̃3z
S(x̄)′ (172)

and λ = λ̃. Therefore:

CGES
ks = λ2s + λ3ks (since λ = λ̃)

which is result (59′). Results (61′), (62′), (63′), and (64′) then follow by substitution

of result (59′) into (33′), (34′), (37′), and (38′) in Proposition 9.

Proof for Proposition 13

Let the approximation error in (115) be:

vm(xo,xp) ≡ h(xo,xp)− hm(xo,xp)ϕ̄ (173)

Assumptions 1–6 and peer separability are given, so part (1) of Proposition 3 applies.

Therefore:

yi = yi(pi) =
∑
j∈pi

PEij (by (44) in Proposition 3)
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Taking expectations:

E
(
yi

∣∣∣xi, {xj}j∈pi

)
= E

∑
j∈pi

PEij

∣∣∣∣∣∣xi, {xj}j∈pi


=
∑
j∈pi

E (PEij |xi,xj) (RA =⇒ τi, τj ⊥⊥ τj′)

=
∑
j∈pi

h(xi,xj) (by (115))

=
∑
j∈pi

hm(xi,xj)ϕ̄+
∑
j∈pi

vm(xi,xj) (by (173))

= (n0 − 1)h̄iϕ̄+
∑
j∈pi

vm(xi,xj) (174)

By construction:

L(vm(xi,xj)|hm(xi,xj)) = L(h(xi,xj)− hm(xi,xj)ϕ̄|hm(xi,xj))

= hm(xi,xj)ϕ̄− hm(xi,xj)ϕ̄

= 0 (175)

Applying the law of iterated projections:

L
(
yi|h̄i

)
= L

(
E
(
yi

∣∣∣xi, {xj}j∈pi

)∣∣∣ h̄i

)
= L

(n0 − 1)h̄iϕ̄+
∑
j∈pi

vm(xi,xj)

∣∣∣∣∣∣ h̄i

 (by (117))

= (n0 − 1)h̄iϕ̄

which implies that:

ϕ = (n0 − 1)ϕ̄ (176)
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By result (1) in Proposition 3:

CPE(xo,xp) = E (PEij |xi = xo,xj = xp)

− E (PEij |xi = xo,xj = e0)

(by (45) in Proposition 3)

= h(xo,xp)− h(xo, e0) (by (115))

≈ hm(xo,xp)ϕ̄− hm(xo, e0)ϕ̄+ vm(xo,xp)− vm(xo, e0) (by (173))

≈
(
hm(xo,xp)− hm(xo, e0)

n0 − 1

)
ϕ (by (176))

which is result (118) in the proposition, with approximation error the same order of

magnitude as the approximation error in (115)

Proof for Proposition 14

Let the approximation error in (119) and (120) be:

v(xp) ≡ a(xp)− am(xp)π (177)

v(xo,xp) ≡ h(xo,xp)− hm(xo,xp)ϕ (178)

Let p̃ be a purely random draw of n0 − 1 peers from I \ {i}. By (RA), pi is a random

draw from the same distribution, so
(
yi,xi, {xj}j∈pi

)
has the same joint distribution
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as
(
yi(p̃),xi, {xj}j∈p̃

)
. The result follows by substitution:

AGE(xp) = E
(
yi(p̃)

∣∣∣{xj}j∈p̃ = xp
)

− E
(
yi(p̃)

∣∣∣{xj}j∈p̃ = {e0, . . . , e0}
) (definition)

= E
(
yi

∣∣∣{xj}j∈pi
= xp

)
− E

(
yi

∣∣∣{xj}j∈pi
= {e0, . . . , e0}

) (same joint distribution)

= a (xp)− a ({e0, . . . , e0}) (by (119))

= am (xp)π − am ({e0, . . . , e0})π + v(xp)− v ({e0, . . . , e0}) (by (177))

≈ (am (xp)− am ({e0, . . . , e0}))π (by (119))

CGE(xo,xp) = E
(
yi(p̃)

∣∣∣xi = xo, {xj}j∈p̃ = xp
)

− E
(
yi(p̃)

∣∣∣xi = xo, {xj}j∈p̃ = {e0, . . . , e0}
) (definition)

= E
(
yi

∣∣∣xi = xo, {xj}j∈pi
= xp

)
− E

(
yi

∣∣∣xi = xo, {xj}j∈pi
= {e0, . . . , e0}

) (same joint distribution)

= h (xo,xp)− h (xo, {e0, . . . , e0}) (by (120))

= hm (xo,xp)ϕ− hm (xo, {e0, . . . , e0})ϕ+ v(xo,xp)− v (xo, {e0, . . . , e0})
(by (178))

≈ (hm (xo,xp)− hm (xo, {e0, . . . , e0}))ϕ (by (120))

which are results (121) and (122).
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